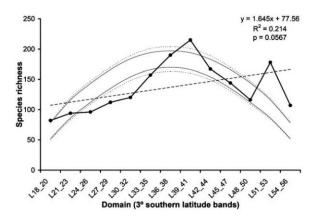


Dr. Rodrigo A. Moreno
Facultad de Ciencias
Centro de Investigación e Innovación para el Cambio Climático
Doctorado en Conservación y Gestión de la Biodiversidad
Universidad Santo Tomás
Santiago

Sitos web: www.rodrigoamoreno.cl

www.ciicc.cl



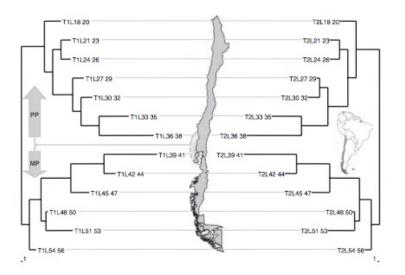
0. % Similarity

Biogeographical patterns and Rapoport's rule in southeastern Pacific benthic polychaetes of the Chilean coast

Cristián E. Hernández, Rodrigo A. Moreno and Nicolás Rozbaczylo

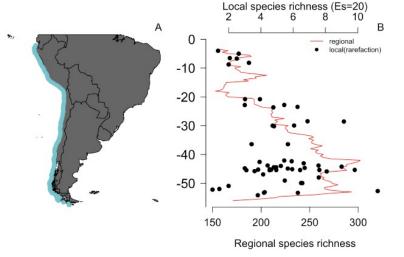
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2008) 17, 415-423

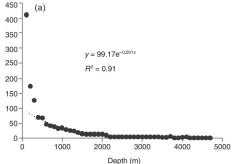
Do Rapoport's rule, the mid-domain effect or the source-sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America?


Rodrigo A. Moreno^{1*}, Marcelo M. Rivadeneira², Cristián E. Hernández³, Sandra Sampértegui³ and Nicolás Rozbaczylo⁴

Journal of Biogeography (J. Biogeogr.) (2006) 33, 750-759

Patterns of endemism in south-eastern Pacific benthic polychaetes of the Chilean coast


Rodrigo A. Moreno1*, Cristián E. Hernández1,2, Marcelo M. Rivadeneira3, Marcela A. Vidal4 and Nicolás Rozbaczylo1



Evolutionary drivers of the hump-shaped latitudinal gradient of benthic polychaete species richness along the Southeastern Pacific coast

Rodrigo A. Moreno^{1,2}, Fabio A. Labra^{1,2}, Darko D. Cotoras³, Patricio A. Camus^{4,5}, Dimitri Gutiérrez⁶, Luis Aguirre⁷, Nicolás Rozbaczylo⁸, Elie Poulin⁹, Nelson A. Lagos^{1,2}, Daniel Zamorano^{2,10} and Marcelo M. Rivadeneira^{11,12,13}

350 300 $y = 99.17e^{-0.001x}$ **8** 250 $R^2 = 0.91$ 200

298 1500 2000 2500 3000-3500 4000

Figure 2 Bathymetric ranges of distribution of 498 polychaete species, from the intertidal zone to 4700 m in the south-eastern Pacific of the Chilean coast.

Assessing geographic patterns of spatial turnover in benthic polychaete species along the South-eastern Pacific coast

Modalidad: Oral

Labra Fabio A.^{1,2}, Moreno Rodrigo A.^{1,2}, Cotoras D. D.³, Rivadeneira Marcelo^{4,5,6}

Evaluar cual es el patrón de recambio de especies (o diversidad β) de poliquetos bentónicos a lo largo del Pacífico suroriental, y cuales son las variables ambientales que explican o da cuenta de este patrón de recambio de especies a lo largo de este gradiente biogeográfico.

Vol. 657: 147–159, 2021 https://doi.org/10.3354/meps13531	MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser	Published January 7

Biogeography of polychaete worms (Annelida) of the world

Joko Pamungkas^{1,2,*}, Christopher J. Glasby³, Mark J. Costello^{4,5}

Institute of Marine Science, the University of Auckland, Auckland 1010, New Zealand
Paesaerth Center for Biology, Indonestan Institute of Sedences, Cibinong 16911, Indonesta
Pattiseum and Art Gallery of the Northern Territory, Darwin, NT 6020, Australia
School of Environment, the University of Auckland, Auckland 1010, New Zealand
Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodo, Norway

Mar Ecol Prog Ser 657: 147-159, 2021

150

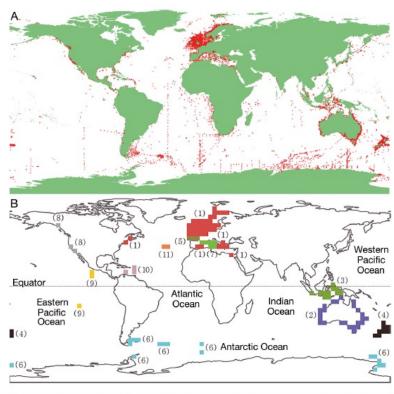


Fig. 1. (A) Polychaete occurrence records and (B) biogeographic regions. Species records were based on Global Biodiversity Information Facility (GBIF) and Ocean Biogeographic Information System (OBIS) datasets, plus our recently published checklist of Indonesian polychaete species (Pamungkas & Glasby 2019). Biogeographic regions were generated by uploading the records to the interactive web application 'Infomap Bioregions' (http://bioregions.mapequation.org) (see Table 1 for additional details)

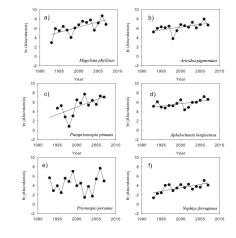
SCIENTIFIC ADVANCES IN POLYCHAETE RESEARCH R. Sardá, G. San Martín, E. López, D. Martin and D. George (eds.)

SCIENTIA MARINA 70S3 December 2006, 169-178, Barcelona (Spain) ISSN: 0214-8358

Mar Biodiv (2018) 48:1203-1212 DOI 10.1007/s12526-016-0569-z

SENCKENBERG

ORIGINAL PAPER

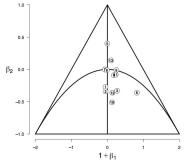
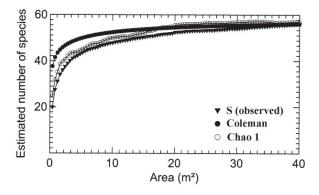

The relative role of ecological interactions and environmental variables on the population dynamics of marine benthic polychaetes

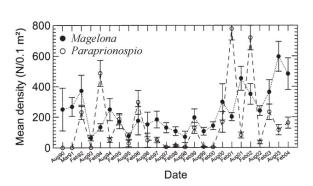
Fabio A. Labra 1 · Rodrigo A. Moreno 1 · Sergio A. Alvarado 2,3,4 · Franklin D. Carrasco 5 · Sergio A. Estay 6,7 · Marcelo M. Rivadeneira 8

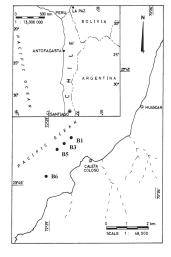
Table 1 Fitted population dynamic models for benthic polychaetes at Punta Coloso, Antofagasta, Chile. The table shows the four models fitted each species, indicating the parameter values in the equations. The table also shows for each model fitted to each species the determination

the Bayesian information criterion weights (BIC_w). For each species, the best population dynamic models were compared by using the BIC and BICw, with the optimal model selected highlighted in bold type

Species	Model	\mathbb{R}^2	BIC	$\mathrm{BIC}_{\mathrm{w}}$
Group A: Models which include SSTW				
1) Magelona phyllisae	$R_t = 9.79 - 1.05X_{t-1} - 0.27X_{t-2}$	0.54	44.23	0.53
	$R_t = 17.25 - 1.10X_{t-1} - 0.24X_{t-2} - 0.45SSTW$	0.63	44.16	0.55
	$R_t = 19.21 - 0.99X_{t-1} - 0.2X_{t-2} - 0.48SSTS$	0.58	45.74	0.25
	$R_t = 10.78 - 1.13X_{t-1} - 0.31X_{t-2} + 0.52SOI$	0.57	46.13	0.20
2) Aricidea pigmentata	$R_t = 11.01 - 1.05X_{t-1} - 0.34X_{t-2}$	0.57	40.50	0.10
	$R_t = 20.5 - 1.06X_{t-1} - 0.35X_{t-2} - 0.58SSTW$	0.75	36.24	0.83
	$R_t = 18.94 - 0.94X_{t-1} - 0.21X_{t-2} - 0.45SSTS$	0.60	42.06	0.05
	$R_t = 11.04 - 1.06X_{t-1} - 0.33X_{t-2} + 0.10SOI$	0.57	43.03	0.03
3) Paraprionospio pinnata	$R_t = 6.04 - 0.73X_{t-1} - 0.33X_{t-2}$	0.51	47.50	0.01
	$R_t = 27.21 - 0.87X_{t-1} - 0.45X_{t-2} - 1.23SSTW$	0.82	38.79	0.89
	$R_t = 41.26 - 0.61X_{t-1} - 0.12X_{t-2} - 1.71SSTS$	0.73	43.22	0.10
	$R_t = 6.06 - 0.74X_{t-1} - 0.32X_{t-2} + 0.06SOI$	0.51	49.90	0.00
4) Kinbergonuphis lineata	$R_t = 2.69 - 0.82X_{t-1} - 0.09X_{t-2}$	0.35	43.19	0.05
	$R_t = -8.28 - 1.28X_{t-1} - 0.23X_{t-2} + 0.79SSTW$	0.63	38.53	0.52
	$R_t = -21.02 - 0.84X_{t-1} + 0.18X_{t-2} + 1.06SSTS$	0.61	38.95	0.42
	$R_t = 2.64 - 0.85X_{t-1} - 0.06X_{t-2} - 0.11SOI$	0.35	45.73	0.01
5) Nereis dorsolobata	$R_i = 2.27 - 1.00X_{i-1} + 0.40X_{i-2}$	0.60	35.17	0.19
	$R_t = -5.66 - 1.39X_{t-1} + 0.6X_{t-2} + 0.54SSTW$	0.71	33.45	0.45
	$R_t = -10.78 - 0.96X_{t-1} + 0.58X_{t-2} + 0.56SSTS$	0.68	34.86	0.22
	$R_t = 1.10 - 0.84X_{t-1} + 0.52X_{t-2} - 0.68SOI$	0.66	35.71	0.14
6) Clymenella fauchaldi	$R_t = 1.4 - 0.18X_{t-1} - 0.36X_{t-2}$	0.33	37.84	0.23
	$R_t = -8.25 - 0.47X_{t-1} - 0.27X_{t-2} + 0.64SSTW$	0.51	36.86	0.38
	$R_t = -13.56 - 0.15X_{t-1} - 0.32X_{t-2} + 0.68SSTS$	0.47	37.68	0.25
	$R_t = 0.78 - 0.32X_{t-1} - 0.05X_{t-2} - 1.26SOI$	0.42	38.80	0.14
Group B: Models with no environmental variab	les			
7) Nephtys ferruginea	$R_t = 4.91 - 1.07X_{t-1} - 0.00X_{t-2}$	0.53	34.47	0.45
	$R_t = 7.93 - 0.83X_{t-1} + 0.05X_{t-2} - 0.27SSTW$	0.57	35.94	0.22
	$R_t = -0.76 - 1.27X_{t-1} + 0.00X_{t-2} + 0.30SSTS$	0.55	36.59	0.16
	$R_t = 5.52 - 1.21X_{t-1} + 0.03X_{t-2} + 0.41SOI$	0.56	36.30	0.18
8) Leitoscoloplos kerguelensis chilensis	$R_t = 4.47 - 1.01X_{t-1} - 0.01X_{t-2}$	0.43	37.96	0.50
	$R_t = 3.68 - 1.01X_{t-1} - 0.04X_{t-2} + 0.06SSTW$	0.43	40.47	0.14
	$R_t = 11.58 - 0.94X_{t-1} + 0.16X_{t-2} - 0.38SSTS$	0.46	39.70	0.21
	$R_t = 4.49 - 1.02X_{t-1} - 0.01X_{t-2} + 0.05SOI$	0.43	40.52	0.14
9) Mediomastus branchiferus	$R_t = 2.14 - 0.75X_{t-1} - 0.01X_{t-2}$	0.31	53.95	0.50
	$R_t = 1.16 - 0.76X_{t-1} - 0.04X_{t-2} + 0.07SSTW$	0.32	56.50	0.14
	$R_t = -13.54 - 0.98X_{t-1} - 0.09X_{t-2} + 0.76SSTS$	0.35	55.88	0.19
	$R_t = 2.29 - 0.74X_{t-1} - 0.03X_{t-2} + 0.57SOI$	0.34	56.08	0.17
10) Megalomma monoculata	$R_t = 3.58 - 0.87X_{t-1} - 0.51X_{t-2}$	0.49	38.39	0.38
	$R_t = 7.93 - 0.73X_{t-1} - 0.49X_{t-2} - 0.3SSTW$	0.53	39.95	0.18
	$R_t = -17.57 - 1.45X_{t-1} - 0.69X_{t-2} + 1.06SSTS$	0.56	39.17	0.26
	$R_t = 3.59 - 0.96X_{t-1} - 0.38X_{t-2} + 0.65SOI$	0.53	39.93	0.18
11) Cossura chilensis	$R_t = 2.41 - 0.77X_{t-1} - 0.08X_{t-2}$	0.39	46.11	0.49
	$R_t = 5.07 - 0.77X_{t-1} - 0.12X_{t-2} - 0.16SSTW$	0.40	48.38	0.16
	$R_t = 12.84 - 0.84X_{t-1} - 0.13X_{t-2} - 0.46SSTS$	0.41	48.08	0.18
	$R_t = 2.57 - 0.82X_{t-1} - 0.07X_{t-2} + 0.4SOI$	0.40	48.32	0.16

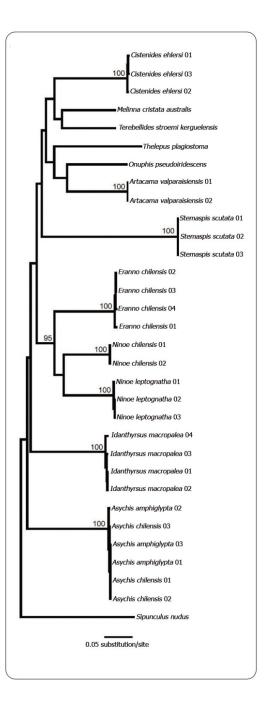




Fig. 4 Fitted autoregressive model coefficients within the same scheme as Fig. 1. The numbers indicate the fitted AR(2) model coefficients (1+ β_1) and β_2 , which estimate the strength of direct and delayed density dependence, respectively. Numbered circles indicate the fitted coefficient values for each of the species, with numbers corresponding to those for each species in Table 1. See text for details


Long-term dynamics (1990 to 2004) of the polychaete fauna from the sublittoral soft-bottoms off Punta Coloso (Antofagasta), northern Chile

FRANKLIN D. CARRASCO and RODRIGO A. MORENO

Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. E-mail: fcarrasc@udec.cl


Revista de Biología Marina y Oceanografía Vol. 46, N°1: 35-42, abril 2011 Article

DNA barcoding of marine polychaetes species of southern Patagonian fjords

Barcoding de poliquetos marinos de los fiordos patagónicos del sur de Chile

Claudia S. Maturana¹, Rodrigo A. Moreno^{1,2,3}, Fabio A. Labra², Claudio A. González-Wevar¹, Nicolás Rozbaczylo⁴, Franklin D. Carrasco⁵ and Elie Poulin¹

Convenio 2023 con GEVOL, U. de Chile – UST para trabajar en Genómica evolutiva en poliquetos

Dr. Marco Méndez

Programa de las Naciones Unidas para el Desarrollo (PNUD) Fondo para el Medio Ambiente Mundial (GEF) Ministerio del Medio Ambiente (MMA)

Proyecto Fortalecimiento de los Marcos Nacionales para la Gobernabilidad de las Especies Exóticas Invasoras: Proyecto Piloto en el Archipiélago Juan Fernández (Proyecto GEF EEI)

Programa de las Naciones Unidas para el Desarrollo

Investigador Principal: Dr. Aníbal Pauchard

Co-Investigadores:

Dra. Nicol Fuentes Dra. Viviane Jerez Dr. Juan Larraín M Sc. Alicia Marticorena Dr. Rodrigo Moreno Dr. Juan Carlos Ortiz Dr. Götz Palfner Dr. Pedro Victoriano Dr. Cristóbal Villaseñor

Equipo Técnico:

Dr. (c) Fernando Carrasco Biol. Paulina Sánchez

Contraparte Técnica:

M Sc. Fernando Baeriswyl Med. Veterinario Charif Tala M Sc. Emma Elgueta Ing. RRNN. Macarena Isla Lic. Giuliana Furci

Edición:

PAUTA CREATIVA Comunicaciones

Diseño y diagramación:

Revista Chilena de Historia Natural 79: 263-278, 2006

Perezmeyer Diseño

PRIMER CATÁLOGO **INTEGRAL DE ESPECIES EXÓTICAS DEL PAÍS**

Jefa División Recursos Naturales y Biodiversidad, Ministerio del Medio Ambiente.

de Naciones Unidas para el Desarrollo, PNUD Chile.

Paloma Toranzos, Oficial de Medio Ambiente y Energía del Programa

NeoBiota 60: 25-41 (2020) doi: 10.3897/neobiota.61.55366 http://neobiota.pensoft.net

Multi-taxa inventory of naturalized species in Chile

Nicol Fuentes¹, Alicia Marticorena¹, Alfredo Saldaña¹, Viviane Jerez², Juan Carlos Ortiz², Pedro Victoriano², Rodrigo A. Moreno^{3,4}, Juan Larraín⁵, Cristobal Villaseñor-Parada^{6,7}, Götz Palfner¹, Paulina Sánchez^{6,8}, Aníbal Pauchard^{6,8} Tabla 4. Grupos taxonómicos incluidos en este catálogo v número de especies exóticas registradas por grupo.

GRUPO	ESPECIES
Plantas vasculares terrestres	755*
Plantas vasculares acuáticas	19
Plantas no vasculares (briófitas): musgos y hepáticas	29
Algas	21
Hongos	71
Mamíferos	23*
Aves	13*
Reptiles	2
Anfibios	1
Peces	28
Insectos	109
Invertebrados acuáticos (moluscos y poliquetos)	21
Invertebrados terrestres (solo moluscos)	27
Total especies catálogo	1119
* incluye especies nativas naturalizadas/asilvestradas	en algún territorio de Chile

Native and non-indigenous boring polychaetes in Chile: Down under the southeastern Pacific: marine non-indigenous species in Chile a threat to native and commercial mollusc species

> Poliquetos perforadores nativos y no indígenas en Chile: una amenaza para moluscos nativos y comerciales

RODRIGO A. MORENO*, PAULA E. NEILL & NICOLÁS ROZBACZYLO

tamento de Ecología and Center for Advanced Studies in Ecology & Biodiversity (CASEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 6513677, Chile; * e-mail for corresponding author: romoren@bio.puc.cl

P Scientific name Polychaeta	Family	Native Range	Administrative regions occupied by the alien species in Chile	First year report	Type of introduction	impacts
1 Boccardia tricuspa (Hartman, 1939)	Spionidae	North Pacific, Central Pacific	5;8;10	No data	No data	Economic impact
2 Dipolydora giardi (Mesnil, 1896)	Spionidae	Central Pacific	5;10	No data	No data	Economic impact; competes with native species
3 Polydora bioccipitalis Blake & Woodwick, 1971	Spionidae	North Pacific, North Atlantic	15;1;4;5	No data	Accidental	Economic impact
4 Polydora rickettsi Woodwick, 1961	Spionidae	North Pacific	3;5;10	No data	Accidental	Economic impact
5 Polydora hoplura Claparède, 1868	Spionidae	North Pacific	4	No data	Accidental	Economic impact
6 Terebrasabella heterouncinata Fitzhugh & Rouse, 1999	Sabellidae	South Atlantic	10	2006	Accidental	Economic impact; competes with native species

Fuente:

Biological Invasions (2005) 7: 213-232

for correspondence (e-mail: jcastill@bio.puc.cl)

Juan C. Castilla1,*, Malva Uribe1, Nibaldo Bahamonde2, Marcela Clarke3, Ruth

Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile; ²Departamento de Ecologia, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D Santiago, Chile;

Facultad de Recursos del Mar, Departamento de Acuicultura, Universidad de Antofagasta, Antofagasta, Chile; 4Museum d'histoire naturelle, Departement des Invertebres, P.O. Box 6434, Geneve 6, Switzerland ⁵Facultad de Ciencias Naturales y Oceanográficas (Zoología), Universidad de Concepción, Casilla 160-C,

Concepción, Chile; 6Centro EULA, Universidad de Concepción, Casilla 160-C, Concepción, Chile; * Author

Desqueyroux-Faúndez⁴, Ismael Kong³, Hugo Moyano⁵, Nicolás Rozbaczylo², Bernabé Santelices², Claudio Valdovinos⁶ & Patricio Zavala²

Center for Advanced Studies in Ecology & Biodiversity (CASEB), Facultad de Ciencias Biológicas,