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Disclaimer on maps 
The designations employed and the presentation of material on the maps used in the present report do not imply the 
expression of any opinion whatsoever on the part of the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services concerning the legal status of any country, territory, city or area or of its authorities, or concerning the 
delimitation of its frontiers or boundaries. These maps have been prepared or used for the sole purpose of facilitating the 
assessment of the broad biogeographical areas represented therein. 
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Chapter 2

TRENDS AND STATUS OF  
ALIEN AND INVASIVE ALIEN  
SPECIES

EXECUTIVE SUMMARY 

 1 At least 39,215 alien species and more than 
37,000 established alien species have been recorded 
worldwide and occurrences of established alien 
species have been reported from all countries and all 
ecosystems globally (established but incomplete) 
{2 .2 .2} . Among these, 5,256 species have been classified 
as invasive according to the database underlying this 
chapter (established but incomplete) {2.2.2}. The 
distribution of established alien species shows marked 
hotspots of high species numbers, mostly located in North 
America, Europe, and Australasia, but also in individual 
African and Asian countries (established but incomplete) 
{2.2.2}. However, low data availability, particularly in Africa 
and Central Asia, suggests that many more unrecorded 
established alien species are extant but not reported due to 
a lack of monitoring and data integration (established but 
incomplete) {2.1.3, 2.1.4, 2.7}. Thus, the reported numbers 
of alien, established alien, and invasive alien species are 
likely severely underestimated (well established) 
{2.1.3., 2.1.4}.

 2 The number of established alien species has 
risen at continuously accelerating rates for centuries, 
recently reaching the highest total number of 
established alien species and highest annual rate of 
new records (established but incomplete) {2 .2 .1} . The 
rise in established alien species numbers has had periods 
of uniform increases and marked accelerations (well 
established) {2.1, 2.2.1}. Before 1800, the introduction of 
alien species was largely driven by European colonialism, 
while recently introductions for ornamental purposes or 
associated with international transport have become more 
important pathways (well established) {2.1, 2.1.2, 2.3.1.2, 
2.3.1.6, 2.4.2.2, 2.4.5.2, Box 2.5}. Marked accelerations 
of alien species introductions were observed circa 1800 
and post-1950, currently reaching the highest value yet; 37 
per cent of documented alien species introductions over 
the last two centuries have occurred since 1970 
(established but incomplete) {2.1}. In addition to total 
numbers, the rate of increase of newly recorded alien 
species, which later became established, has also 
continuously risen with approximately 200 new alien 
species now recorded annually worldwide (established but 
incomplete) {2.2.1}.

 3 In absolute values, the highest numbers of 
established alien species records have been reported 
for vascular plants, insects, fishes, fungi, and 
molluscs (established but incomplete) {2 .2 .2} . The 
distribution of established alien species worldwide is similar 
across taxonomic groups, with hotspots located in North 
America, Europe, and Australasia (established but 
incomplete) {2.2.2}. Vascular plants and mammals are the 
most widespread invasive alien species (well established) 
{2.2.2}. Temporal trends of records revealed three main 
patterns: For vascular plants, the number of records and the 
rate of increase rose distinctly from the nineteenth century to 
the present (well established) {2.3.2.1}, while for 
invertebrates, algae, and microorganisms, numbers and 
rates showed a marked increase particularly after 1950, 
likely due to increasing trade (established but incomplete) 
{2.3.1.6; 2.3.1.8, 2.3.1.9, 2.3.2.3, 2.3.3}. Mammals 
represent the only taxonomic group where the rate of new 
annual records has consistently declined since 1950, likely 
as a result of stricter regulations. However, while declining, 
the rate is still positive resulting in additional new alien 
mammal records each year (established but 
incomplete) {2.3.1.1}.

 4 The total numbers of established alien species 
are similar in all IPBES regions except for Africa, 
ranging from 14,797 to 17,628 established alien 
species in the Americas, Europe and Central Asia, and 
Asia and the Pacific; total numbers are distinctly lower 
for Africa, which hosts a maximum of 6,484 
established alien species (established but incomplete) 
{2 .4 .1, 2 .4 .2, 2 .4 .3, 2 .4 .4, 2 .4 .5} . The lower number of 
established alien species in Africa likely results from a 
combination of reduced introduction effort and lower data 
availability; therefore, the true number of alien and invasive 
alien species is expected to be markedly higher in Africa 
than currently reported (established but incomplete) {2.4.1}. 
Likewise, rates of increase were similar among the 
Americas, Europe and Central Asia, and Asia and the 
Pacific, but lower for Africa where data are less complete 
(established but incomplete) {2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.7}. 

 5 The majority of established alien species have 
been reported from terrestrial ecoregions (75 per 
cent), while distinctly fewer established alien species 
were recorded in freshwater and marine ecosystems 
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(established but incomplete) {2 .5 .1, 2 .5 .2, 2 .5 .3, 2 .5 .4} . 
In part, this pattern reflects the natural distribution of species 
across ecosystems. However, aquatic habitats and marine 
systems in particular are less thoroughly sampled in 
comparison to terrestrial systems, suggesting that many 
more alien marine species have not been detected and 
recorded (established but incomplete) {2.5.2, 2.5.3, 2.5.4}.

 6 The number of established alien species is 
expected to rise further with a predicted 36 per cent 
global increase by 2050, but with large variations by 
region and among groups of organisms; most existing 
established alien species are expected to expand their 
current ranges (established but incomplete) {2 .6 .1} . 
Annual rates of increase are predicted to rise further for 
invertebrates, such as insects and molluscs, likely as a 
consequence of anticipated increasing trade and transport, 
but to decline for mammals, probably due to efforts to 
prevent their introduction and spread (established but 
incomplete) {2.6.1}. However, models and scenarios to 
project biological invasion dynamics are scarce and 
underdeveloped, hindering a robust assessment of future 
dynamics (well established) {2.6.5}. Although some 
established alien species have reached their geographic 
range limits, most established alien species are likely to 
further expand their alien ranges in the near future 
(established but incomplete) {2.6.1}.

 7 The number of established alien species is 
consistently lower on land managed by Indigenous 
Peoples (established but incomplete) {Box 2 .6} . 
Indigenous Peoples’ lands are often remote and host more 
natural habitats compared to other lands, but that has not 
protected them from alien species introductions. A total of 
6,351 established alien species and 2,355 invasive alien 
species have been recorded worldwide on Indigenous 
Peoples’ land (established but incomplete) {Box 2.6}. 
Hotspots of biological invasions on Indigenous lands with 
high numbers of established alien species are found on all 
inhabited continents but especially in Australasia, North 
America, and Europe (established but incomplete) {Box 
2.6}, regions that have the highest established alien species 
numbers in general. Invasive alien species affect the 
livelihoods and good quality of life of Indigenous Peoples 
and local communities worldwide (established but 
incomplete) {Box 2.11}. However, most available studies on 
lands of Indigenous Peoples and local communities and on 
good quality of life focus on woody vascular plants, while 
much less information is available for the effects of other 
taxa, particularly microbes and insects (established but 
incomplete) {Boxes 2.6 and 2.11}.

 8 Islands generally host high numbers of alien and 
invasive alien species (well established) {Box 2 .5} . 
Compared to mainland areas, the number of established 
alien species on islands is often very high (well established) 

{Box 2.5}. For vascular plants, the numbers of established 
alien species exceed the total number of native species on 
many islands, doubling the plant species richness on those 
islands (well established) {Box 2.5}. Worldwide, widespread 
invasive alien species on islands include mammals such as 
Rattus spp. (rats), Mus musculus (house mouse), and Felis 
catus (cat), and plants such as Leucaena leucocephala 
(leucaena), Lantana camara (lantana), and Ricinus 
communis (castor bean) (well established) {Box 2.5}.

 9 Research intensity and data availability 
documenting established alien species’ occurrences 
have increased in recent decades, but information 
about alien species distributions remains incomplete, 
particularly for inconspicuous species such as 
invertebrates, microorganisms, and aquatic species 
(well established) {2 .1 .4, 2 .2 .2, 2 .7} . Lists of established 
alien species occurrences are very likely incomplete in the 
vast majority of cases across in the world (established but 
incomplete) {2.1.3, 2.1.4}. There are, however, major critical 
gaps for many species groups in large parts of Africa and 
Central Asia, for invertebrates and microorganisms, and for 
marine and freshwater species worldwide (well established) 
{2.2.2, 2.3.1.11, 2.3.2.5, 2.3.3.3, 2.4.2.5, 2.4.5.5, 2.5.1}. 
Gaps in recording alien species occurrences result in 
incomplete alien species lists and prevent a fully 
comprehensive assessment of the trends and status of 
invasive alien species across all taxa and habitats 
(established but incomplete) {2.2.2}. Further uncertainty 
arises from time lags that can span several decades from 
species introductions to their first detection (well 
established) {2.2.1, 2.2.3}, very likely making the 
documented numbers of established alien species a severe 
underestimate of the true extent of biological invasions (well 
established) {2.2.1, 2.2.2}. Importantly, incomplete data 
does not preclude drawing robust conclusions about alien 
and invasive alien species (well established) {2.7}. By taking 
data uncertainty into account, experts can provide a 
complete, credible, and transparent assessment that can be 
updated as more information becomes available (well 
established) {2.7}.

 10 A global assessment of biological invasions that 
covers the trends and status of regions and species 
groups equally can be achieved by a major increase in 
efforts to monitor alien and invasive alien species and 
by standardizing protocols for handling and sharing 
data at a global scale (established but incomplete) 
{2 .7} . Closing knowledge gaps in all regions and species 
groups and improving understanding of biotic and abiotic 
interactions that influence how species respond to 
environmental changes can be achieved through consistent, 
repeatable, and comparable studies of alien species 
occurrences that are deposited into publicly available 
repositories (established but incomplete) {2.7}. Additional 
applications of technology (e.g., remotely sensed data, 



THE THEMATIC ASSESSMENT REPORT ON INVASIVE ALIEN SPECIES AND THEIR CONTROL

78

Figure 2  1   Trends in drivers of change in nature and correlates of biological invasions . 

Panels show temporal trends of a selection of main drivers and correlates of biological invasions averaged globally. For “shipping” and 
“human migration” only proxy variables are shown due to the lack of more comprehensive data covering the full time period. Although 
these proxy variables represent only subsets of the full dynamics, they well indicate the overall temporal patterns of change. A data 
management report for this figure is available at https://doi.org/10.5281/zenodo.7615582

environmental DNA) applied at large spatial scales can also 
provide comprehensive coverage of alien and invasive alien 
species (established but incomplete) {2.7}. Engagement by 
and with policymakers, citizen scientists, and Indigenous 
Peoples and local communities worldwide is critical to close 
data and knowledge gaps (established but incomplete) {2.7}.

2.1 INTRODUCTION 
Assessing current and future dynamics of biological 
invasions requires data and knowledge on the geographic 
extent of invasive alien species, which can be used to 
identify hotspots of invasive alien species (Glossary). 
Further, a more comprehensive assessment depends on 
information about temporal trends (Glossary) to evaluate 
past and potential future species spread and detailed 
information on alien species, which while not yet classified 
as invasive in certain regions could become invasive in the 
future. To achieve a comprehensive global assessment of 

biological invasions, this chapter includes information on 
temporal trends and spatial distributions of both alien and 
invasive alien species (a subset of alien species). 

Humans have introduced species to regions outside of their 
native ranges (Glossary) for millennia, and throughout, 
these introductions have undergone different periods 
of acceleration. As early as approximately 8000 B.C., 
neolithic people unintentionally distributed plant seeds when 
transporting crops (e.g., Di Castri, 1989). The first evidence 
of agricultural crops being traded over long distances comes 
from the Pharaohs of ancient Egypt approximately 3,000 
to 1,500 years ago (Janick, 2007) and from Mesoamerica 
around the same period (Sanchéz, 1997). While early 
reports are scarce and inaccessible, evidence of increasingly 
frequent species exchanges has accumulated. The intensity 
of biotic exchange is often related to the extent and power 
of a particular empire, such as the Romans, Greeks, Aztecs, 
Polynesians, or the Han Dynasty. All introduced a variety of 
species throughout their reigns that continue to survive in 
their new locations (P. A. Cox & Banack, 1991; Di Castri, 
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1989; Ma et al., 2003; Sanchéz, 1997). As these empires 
expanded and the capacity of humans to travel long 
distances improved, there was a concomitant rise in the 
magnitude of alien species introductions. 

The establishment of sea routes between Europe, the 
Americas, Africa, and Asia in the fifteenth century marked 
the onset of a truly global trade network that facilitated a 
continuously growing rise in alien species introductions 
(Figure 2 .1; Di Castri, 1989) but the extent of increase 
varied considerably between taxonomic groups and 
geographic regions. Nonetheless, there has been a 
marked intensification of alien species exchanges across 
all taxonomic groups and regions in the last 200 years; 
the nineteenth century and post-1950s eras experienced 
especially high increases of new species introductions, i.e., 
37 per cent of all documented established alien species 
introductions have occurred since 1970 (Bonnamour et 
al., 2021; Seebens, Blackburn, et al., 2017). Given the 
incomplete and inconsistent records of documented historic 
introductions, it is likely that past introduction rates were 
even higher (Seebens, Blackburn, et al., 2017).

While many species have been unintentionally introduced, 
other introductions in the pre-historic, historic, and modern 
eras have been intentional, occurring for purposes including 
food, horticulture, sport hunting and fishing, the fur trade, the 
pet trade, and for nature’s contributions to people such as 
erosion control and biological control (Glossary; e.g., Eviner 
et al., 2012; Genovesi et al., 2009; Luken & Thieret, 1997; 
R. M. Pringle, 2005; Reichard & White, 2001; Simberloff, 
2012). The introduction pathways (Glossary) and the taxa 
introduced have varied over time (Table 2 .1; Figure 2 .2).

The introduction of alien species is coupled with human 
activities and it is therefore unsurprising that invasion trends 
and human socio-economic activities are closely linked 
(Hulme, 2009; Levine & D’Antonio, 2003; X. Liu et al., 
2019; Meyerson & Mooney, 2007; Pyšek, Jarosik, et al., 
2010). Different drivers may affect invasion dynamics and 
become important during different stages of the biological 
invasion process (Glossary), such as the introduction 
and establishment stages. For instance, global trade and 
transport are well-known major drivers promoting the 
intentional or unintentional introduction of alien species 
(Chapter 3, section 3 .2 .3; and Hulme, 2009). Tourism 
is another important driver (Chapter 3, section 3 .2 .3 .4), 
particularly on remote islands (Toral-Granda et al., 2017). 
But interactions between introduction pathways and 
invasion stages also vary by taxonomic group (e.g., Bernery 
et al., 2022). Anthropogenic disturbances such as habitat 
(Glossary) destruction (e.g., deforestation), degradation 
(e.g., eutrophication) and fragmentation, and climate 
change are strongly associated with increasing habitat 
vulnerability to invasions (Hierro et al., 2006; Hulme, 2017; 
Pauchard & Alaback, 2004; J.-Z. Wan et al., 2019). Thus, 

once introduced, alien species are more likely to establish 
in areas with high degrees of land use change, high human 
population density, and high gross domestic product 
(GDP) (Pyšek, Jarosik, et al., 2010). All of these drivers 
have distinctly increased in the last decades (Figure 2 .1; 
Chapter 3, section 3 .1 .1), paving the way for rising 
numbers of invasive alien species, and the establishment of 
alien species more generally. 

2.1.1 Previous alien and invasive 
alien species assessments

Multiple recent regional and global scale assessments 
have highlighted biological invasions as having a significant 
influence on nature (Glossary), nature’s contributions to 
people, good quality of life and on Indigenous Peoples 
and local communities (Glossary; IPBES, 2018a, 2018b, 
2018c, 2019a). In general, these assessments have noted 
that while progress has been made in identifying pathways 
of alien species introductions and in invasive alien species 
eradication and management (Glossary; Secretariat of the 
CBD, 2020), successful prevention of biological invasions 
(Glossary) remains limited, in part due to ineffective 
border controls in some countries (Secretariat of the CBD, 
2014). Global and regional assessment reports show that 
biological invasions are an increasing worldwide threat (Early 
et al., 2016; Osipova et al., 2017; WWF, 2018) exerting 
pressure on native biodiversity in concert with other global 
phenomena (IPBES, 2016; Secretariat of the CBD, 2020) 
resulting in consequences such as biotic homogenization 
and the extinction of native species (Glossary; Millennium 
Ecosystem Assessment, 2005). However, both positive 
and negative impacts (Glossary) associated with alien 
species have been documented (IPBES, 2016; Roué et 
al., 2017). Nonetheless, large swathes of several regions 
remain understudied and report relatively little information 
regarding invasive alien species (IPBES, 2018b). In Europe, 
Central Asia, and in the Americas, biological invasions are 
severe due to extensive trade and transportation networks 
that are pathways for alien species introductions (IPBES, 
2018b, 2018c) with more complete documentation in 
Europe and North America. In Central Asia, South America 
and mesoamerica, and in Africa, biological invasions 
tend to be less well-documented and few sources on the 
biogeographic details of invasive alien species trends are 
available across these regions (IPBES, 2018a, 2018b, 
2018c). Further, invasive alien species are identified by 
Indigenous Peoples and local communities as one of the 
major drivers of change in nature as, for example, these 
species encroach on grazing lands and threaten agricultural 
systems (Forest Peoples Programme et al., 2020; Roué 
et al., 2017). Many invasive alien species do not have any 
cultural or economic value for Indigenous Peoples and local 
communities and some groups lack strategies to deal with 
biological invasions (Roué et al., 2017).
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2.1.2 Pathways of alien species 
introductions

Following standard frameworks (CBD, 2014; Hulme et al., 
2008), pathways describe the mechanisms that result in 
the introduction of alien species. Pathways usually focus 
on movements until a species reaches the border of an 
administrative unit, such as a country, although they are not 
restricted to this definition. Pathways are distinct from routes 
of introduction; pathways describe how and by what means 
a species has entered the new region; route of introduction 
refers to a geographic route between two locations. 
Pathways have been categorized into six major classes 
(release, escape, contaminant, stowaway, corridor, and 
unaided) and several sub-classes. Major classes of pathways 
are provided by the Convention on Biological Diversity (CBD; 
CBD, 2014; Table 2 .1; Chapter 1, Box 1 .6). 

Alien species have been introduced through a variety of 
pathways that have varied in importance over time and 
among species groups (Figure 2 .2; CBD, 2014; Faulkner 
et al., 2016; Hulme et al., 2008; Pyšek et al., 2011). 
Intentional introduction pathways, such as release and 
escape, have played a major role for plant and vertebrate 
introductions, while unintentional introduction pathways, 
such as contaminant and stowaway, are highly relevant for 

introduced invertebrates, algae, and fungi (Saul et al., 2017). 
In addition to variations among species groups, the relative 
importance of pathways for introducing alien species and the 
absolute number of alien species introduced through certain 
pathways has changed over time depending on the number 
of propagules being transported (van Kleunen et al., 2018). 
Overall, the absolute number of established alien species 
has increased across nearly all pathways with particularly 
steep increases beginning circa 1800 and continuing until 
the present (Figure 2 .2). The main pathway recorded for 
most species was escape from confinement, followed by 
contaminant and stowaway, release in nature, and corridors. 
The relative importance of the escape pathway has declined 
slightly in recent decades, while the contaminant and 
stowaway pathways have increased in importance, possibly 
reflecting higher numbers of introductions through global 
trade and transport (Hulme, 2009). For detailed pathway 
classifications, seed contamination was the only pathway 
with declining absolute numbers, and particularly strong 
increases were observed for pet species and stowaways 
(Figure 2 .2). Overall, introductions for ornamental purposes 
remained highest in absolute numbers over the last 200 
years. However, most (82 per cent of all available records 
in the pathway data set by Saul et al. (2017)) information 
on pathways is available for plants and vertebrates, while 
information on introduction pathways is often lacking for 

Table 2  1   Definition of major pathway classes .

Definitions are published by the CBD (2014).

Pathway class Definition

Release in nature The intentional introduction of live alien organisms for the purpose of human use in the natural environment . 
Examples include biological control, erosion control, releases for fishing or hunting in the wild, landscape 
“improvement” and introductions of threatened organisms for conservation or religious purposes .

Escape from confinement The movement of (potentially) invasive alien species from confinement (e .g ., zoos, aquaria, botanic gardens, 
agriculture, horticulture, forestry, aquaculture and mariculture facilities, scientific research or breeding 
programmes, or escaped pets) into the natural environment . Through this pathway, organisms were 
purposefully imported or otherwise transported to confined conditions, but subsequently unintentionally 
escaped confinement .

Transport–Contaminant The unintentional movement of live organisms as contaminants of a commodity that is intentionally transferred 
through international trade, development assistance, or emergency relief . This includes pests and diseases of 
food, seeds, timber, and other products of agriculture, forestry, and fisheries, as well as contaminants of other 
products .

Transport–Stowaway The moving of live organisms attached to transporting vessels and associated equipment and media . The 
physical means of transport-stowaway include various conveyances, ballast water and sediments, biofouling 
of ships, boats, offshore oil and gas platforms and other water vessels, dredging, angling or fishing equipment, 
civil aviation, sea and air containers .

Corridor The movement of alien organisms into a new region following the construction of transport infrastructure 
without which spread would not have occurred . Such trans-biogeographical corridors include international 
canals (connecting river catchments and seas) and transboundary tunnels linking mountain valleys or oceanic 
islands .

Unaided The secondary natural dispersal of invasive alien species that have been introduced by means of any of the 
foregoing pathways . 
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other taxa. Therefore, the patterns and trends in pathway 
dynamics described above are likely biased towards 
pathways associated with plant and vertebrate introductions.

2.1.3 Chapter structure and 
content 

Chapter 2 presents an overview of the current knowledge 
on the trends and status of alien species in general and 
invasive alien species. The logic underlying this chapter, 
the definitions of trends and status, and how the terms 
are used are presented in Box 2 .1. Throughout the 
chapter, three distinct categories for species introduced 
to regions outside of their native ranges have been used: 
alien species, established alien species, and invasive alien 
species (Chapter 1, Figure 1 .1, Glossary). These three 
status categories have been included because studies 
and databases vary in their definitions and details for these 
terms, some studies address only alien species without 
further specification, others focus on established alien 

species, while others distinguish among alien, established 
alien, and invasive alien species. It is critical to distinguish 
the status categories of species along the process of 
biological invasions for two main reasons, that is, because 
each term has a distinct meaning in invasion science and 
because the introduction dynamics, species distributions, 
and factors driving invasion patterns vary by taxa (Hejda 
et al., 2009). The ability to clearly delimit invasive alien 
species from established alien species is impacted by 
a lack of standardized definitions systematically applied 
across studies and databases. Moreover, the status of a 
species introduced outside of its native range can change 
at any given time, further complicating assessments. 
Consequently, it remains difficult to consistently and 
comprehensively collate information on invasive alien 
species trends and status only; thus, alien and established 
alien species are also considered. This chapter does include 
one figure depicting temporal trends of invasive alien 
species numbers (Figure 2 .4, in section 2 .2 .1) and multiple 
tables of the most widespread (Glossary) invasive alien 
species as provided by the Global Register of Introduced 
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Figure 2  2   Introductions of established alien species by pathway over time . 

The figure shows global absolute numbers (top) and relative importance (bottom) of established alien species introductions by 
pathway since 1500. Smoothed trends are indicated by dashed lines. Sudden drops at the end of the time series likely reflect a lack 
of recent records. Only the top ten pathway sub-categories are shown. A data management report for this figure is available at https://
doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
https://doi.org/10.5281/zenodo.7615582
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and Invasive Species (GRIIS; Pagad et al., 2022). However, 
most available information and data are for established 
alien species. When known, the specific invasion status is 
therefore indicated throughout the chapter.

The structure of the chapter is depicted in Figure 2 .3. This 
chapter reports on trends, status, and gaps consistently 
across all major sections. The major sections represent 

first a general introduction (section 2 .1) and an overview 
of the global dynamics (section 2 .2) followed by trends, 
status, and gaps by taxonomic group (section 2 .3), 
IPBES regions and subregions (section 2 .4), IPBES units 
of analysis (section 2 .5), and future projections (section 
2 .6). While this structure creates some redundancies, 
it provides comprehensive and focused information for 
readers interested in a particular group, system, or region. 

Box 2  1   Rationale of the chapter .

Chapter 2 reports on past and future temporal trends in alien 
species (including established and invasive alien species where 
possible) numbers, their current and future status, and data 
and knowledge gaps for taxonomic groups, Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES) regions, and units of analysis (Chapter 1, 
sections 1 .6 .4 and 1 .6 .5). Temporal trends are long-term 
directional changes over long time periods (i.e., decades to 
centuries) in numbers of species, populations, or individuals 
introduced or in the spatial extent of colonization. Trends are 
presented as numbers of species (species richness) and rates 
of accumulation over time (i.e., numbers of newly recorded 
established alien species per unit time). Status is the current 
established alien species number and distributions in a certain 
area such as IPBES regions (section 2 .4) or units of analysis 
(section 2 .5) – and is indicated by established alien species 
number per spatial unit (global, regional, and biogeographic). 
Data and knowledge gaps describe missing or unavailable 

information or data for species or taxonomic species concepts, 
IPBES regions, or units of analysis.

Guiding questions:
• What is the status of alien species globally, regionally, by 

taxon and by unit of analysis?
• What are the trends for established alien species globally, 

regionally, by taxon, and by unit of analysis?
• What are the data and knowledge gaps for alien species-

related data and how do they vary globally, regionally, by 
taxon and by unit of analysis?

• What are the eco-evolutionary dynamics of 
biological invasions?

• What are the methodological limitations and uncertainties 
in future dynamics in invasive alien species?

Keywords: alien species, established alien species, invasive 
alien species, distribution, status, trends, data gaps
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Figure 2  3   Overview of chapter structure . 

Chapter 2 reports on temporal trends, the status of the current distributions of alien and invasive alien species, and the gaps in 
knowledge for taxonomic groups, IPBES regions, units of analysis, and future dynamics. Case studies and in-depth presentations are 
provided in boxes throughout the chapter. 
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In addition, particular emphasis was given to selected 
topics of overall importance in individual boxes. Throughout 
the chapter the term “species” is used for clarity, though it 
should be noted that individual populations of a species, 
not the entire species, are invasive. Where appropriate, the 
distinction has been made between major species groups, 
namely mammals, birds, fishes, reptiles, amphibians, 
insects, spiders, crustaceans, molluscs, other invertebrates, 
vascular plants, aquatic vascular plants, algae, bryophytes, 
fungi, Chromista, bacteria, and viruses.

The trends and status of alien species as presented here are 
based on a comprehensive review of the existing literature 
and databases, supplemented by knowledge from experts 
from all around the world and from multiple biological 
disciplines. The authors strove to provide a globally and 
taxonomically balanced and comprehensive assessment of 
the trends and status of alien, established alien, and invasive 
alien species based on available knowledge and data. 
However, the information residing in alien species records 
occurrences is scattered and patchy. A large number 
of records for alien species occurrences are missing for 
multiple reasons such as data not being publicly available, 
delays entering records into available databases, lack of 
such databases at all, or few or no monitoring activities 
(Glossary), which is particularly problematic for certain taxa 
such as microorganisms and sub-regions such as Central 
Africa. Consequently, the numbers presented in figures and 
tables inevitably underestimate the true numbers of alien 
species occurrences. However, incomplete data does not 
imply that inferred conclusions are flawed; instead, it means 
that conclusions should be drawn carefully while considering 
the availability and potential biases of information. In this 
assessment of trends and status of biological invasions, 
the uncertainty due to incomplete data to provide robust 
conclusions that are scientifically supported by currently 
available evidence has been included.

2.1.4 Generation of data underlying 
figures and tables in this chapter

Due to the use of inconsistent terminology and data 
processing steps, a direct comparison of individual 
studies of alien species occurrences is often difficult. 
Comprehensive global databases that allow direct 
comparisons of numbers across taxonomic groups and 
regions exist for a few well-investigated species groups. 
These global databases provide comprehensive information 
at least for individual species groups and form the basis 
for a database generated for this chapter.2 All numbers 
presented in the tables and figures in this chapter are 
based on this single database compiled specifically for this 
chapter if not stated otherwise. Consequently, the textual 
descriptions of the chapter provide a more comprehensive 
assessment of the existing literature for the respective 

geographic unit or taxonomic group, while the figures 
and tables provide a basis for comparison across regions 
and taxa, which is inevitable based on a reduced number 
of records. The generation of the chapter database is 
described in detail below, and also provided in the data 
management report for this chapter.2

Generation of a database of regional 
checklists of alien species 

The chapter database of alien species occurrences that 
provides the basis for figures and tables in this chapter2 
was established by integrating major global databases 
of alien species occurrences. These databases were 
selected because they are global, represent the most 
comprehensive databases in their field, and are published 
and freely accessible. Altogether, seven databases fulfilled 
these criteria (Table 2 .2): five databases with a focus on 
individual taxonomic groups, and two cross-taxa databases, 
one of which contains years of first records of alien species. 
The development of these databases is based on more 
than 4,000 individual sources of information including 
scientific publications, reports, and regional databases. 
That is, although only seven databases are included, the 
total number of considered publications and data sources 
is considerably larger. Nonetheless, it is likely that even for 
the species groups and content included in the databases, 
not all available reports and studies were considered, 
and records are missing for a variety of reasons. As a 
consequence, the numbers of species reported in figures 
and tables of this chapter are likely higher.

The seven global databases used as the basis for all 
figures and tables in this chapter differ in their spatial 
resolutions, terminologies, and taxonomies, impeding 
the direct integration of databases.2 Assessment experts 
have therefore applied a workflow (i.e., a series of data 
transformation steps implemented in open-source 
computer scripts) to first standardize the spatial resolutions, 
terminologies, taxonomies, and the representation of 
years of first record. Synonyms were resolved according 
to the backbone taxonomy of the Global Biodiversity 
Information Facility (GBIF). Subsequently, the databases 
were combined, duplicated entries were removed, and 
conflicting entries, such as deviating first records, were 
resolved where possible. Conflicting entries that could not 
be resolved automatically, such as deviating invasion status, 
were kept as duplicated entries in the chapter database.2 
New workflows were developed to enable the identification 
of the biogeographical status of occurrence records using 
probabilistic frameworks (e.g., Arlé et al., 2021).

2. The full workflow, including detailed descriptions and manuals, has been 
published (Seebens, 2021; Seebens et al., 2020). Version 1.3.9 of the 
workflow (https://doi.org/10.5281/zenodo.5562840) has been applied 
to produce the final database version 2.4.1, which is used in this chapter 
(https://doi.org/10.5281/zenodo.5562892). The data management report 
is also available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.5562840
https://doi.org/10.5281/zenodo.5562892
https://doi.org/10.5281/zenodo.7615582
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The integration of the seven global databases as described 
above resulted in the largest single database of alien species 
distributions currently available, containing 175,980 records 
of 39,215 alien taxa from 264 locations worldwide. The term 
“location” mostly refers to countries, but the database also 
contains information about sub-national units such as islands 
or federal states in some cases. The database also includes 
populations with unconfirmed or “casual” (Glossary) status. 
Records of casual species are not reported in this chapter 
and therefore excluding casual alien species resulted in 
37,591 established alien species and 5,260 invasive alien 
species as classified by the database GRIIS.

The databases underlying the chapter database differ in 
their terminology describing biological invasion status (i.e., 
introduced, established, invasive) of a population (Groom 
et al., 2019). However, invasion status is often difficult to 
determine due to the lack of protocols for a standardized 
determination. Some databases, such as GloNAF, have 
a more rigorous and conservative approach to classifying 
established alien species, while other databases such as 
GRIIS included more species in this category. Consequently, 
the total numbers of established alien species vary among 
databases. Comprehensive global databases exist for 
mammals, birds, and vascular plants. These underwent 
a thorough assessment of invasion status and thus 
usually report lower numbers relative to cross-taxonomic 
databases such as the GRIIS or FirstRecords. To account 
for this variation in this assessment, total numbers of 
established alien species were provided as ranges for these 
taxonomic groups to emphasize the variation that exists 
in the published material. However, the spatial variations 
of the taxonomic databases are highly correlated with the 

variation in the GRIIS: The Pearson correlation coefficients, 
r, of total established alien species per region between 
GRIIS and GloNAF (r=0.92), Global Avian Invasions Atlas 
(GAVIA) (r=0.76) and Distribution of Alien Mammals (DAMA) 
database (r=0.82) were all high and significant. Thus, the 
spatial and temporal patterns as shown in this chapter do 
not distinctly differ among databases except in the overall 
levels of species numbers. This chapter therefore shows 
the total numbers of established alien species, including all 
databases in maps and time series, and provides ranges in 
tables of established alien species numbers. 

Generation of a database of local occurrence 
records

The database used in this chapter provides information 
on alien species occurrences in so-called checklists 
representing lists of species for countries, large islands or 
other sub-national regions. This is inconvenient when it 
comes to the analysis of the distribution of alien species 
at other delineations such as units of analysis or marine 
ecoregions. To obtain information about alien species 
occurrences at different levels of spatial organization 
and scale, a freely available workflow to downscale 
regional checklists of alien species occurrences was 
applied (Seebens & Kaplan, 2022b). Using this workflow, 
coordinates of species occurrences as reported in the 
chapter database were obtained from GBIF and the Ocean 
Biodiversity Information System (OBIS). For each species 
in the chapter database, coordinates of records (marine 
or terrestrial) were obtained from the aforementioned 
online platforms and identified as representing alien 
populations based on the chapter database. Various 

Table 2  2   List of databases of alien and invasive alien species considered as a basis for 
figures and tables in this chapter .

Database Content used here Citation and source

Global Naturalized Alien Flora (GloNAF) Regional records of alien vascular plants van Kleunen et al., 2019 
https://idata .idiv .de/DDM/Data/ShowData/257 

Global Avian Invasions Atlas (GAVIA) Regional records of alien birds E . E . Dyer, Redding, et al., 2017 
https://doi .org/10 .1038/sdata .2017 .41

Distribution of Alien Mammals (DAMA) Regional records of alien mammals Biancolini et al., 2021
https://doi .org/10 .6084/m9 .figshare .13014368

Alien amphibians and reptiles Regional records of alien amphibians and 
reptiles

Capinha et al., 2017
https://doi .org/10 .1111/ddi .12617

MacroFungi Regional records of alien macro fungi Monteiro et al., 2020
https://doi .org/10 .15468/2qky1q

Alien Species First Records (FirstRecords) First records of alien species in regions 
across taxonomic groups

Seebens, Blackburn, et al., 2017
https://doi .org/10 .5281/zenodo .4632335

GRIIS Regional records of alien and invasive 
alien species across taxonomic groups

Pagad et al., 2022
https://doi .org/10 .5281/zenodo .6348164

https://idata.idiv.de/DDM/Data/ShowData/257
https://doi.org/10.1038/sdata.2017.41
https://doi.org/10.6084/m9.figshare.13014368
https://doi.org/10.1111/ddi.12617
https://doi.org/10.15468/2qky1q
https://doi.org/10.5281/zenodo.4632335
https://doi.org/10.5281/zenodo.6348164
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steps of data cleaning and testing were included to avoid 
false entries. In this way, more than 35 million records of 
alien populations of 17,424 established alien species with 
coordinate-based records were gathered. These point-wise 
occurrence records were then aggregated to obtain total 
established alien species numbers per terrestrial region, 
marine ecoregion (see next paragraph for details, see also 
Chapter 1, section 1 .6 .4 for a description of IPBES regions 
and sub-regions used in the IPBES invasive alien species 
assessment), and land managed by Indigenous Peoples 
(Box 2 .6 in section 2 .4 .1). The full database of coordinates 
is open access (Seebens & Kaplan, 2022a), and includes a 
manual for data generation and digital object identifiers for 
GBIF requests to ensure reproducibility and transparency.

Marine records

Comprehensive information about the global occurrence 
of marine alien species was largely lacking when work 
on this chapter was initiated. Since then, two important 
developments have taken place, namely the publication 
of a worldwide study on marine alien species distributions 
(Bailey et al., 2020) and the publication of the World Register 
of Introduced Marine Species (WRiMS; M. J. Costello et 
al., 2021). In both cases, records of marine alien species 
have been validated by experts in the field. A total number 
of 1,442 marine alien species were recorded by Bailey et al. 
(2020), while 2,714 species were reported by M. J. Costello 
et al. (2021). Both are likely underestimates of the true extent 
of marine alien species. Due to the lack of more detailed 
data and/or available expertise to check individual records 
and regions, the studies cover either only approximately half 
of the world’s marine ecoregions or provide information on 
comparatively large spatial units rendering a comparison of 
marine ecoregions difficult. To provide an alternative way of 
gathering information, this assessment used the database 
of local occurrence records of established alien species as 
described in the previous paragraph, which is based on 
regional checklists of established alien species and records 
from GBIF and Ocean Biodiversity Information System 
(OBIS) as described in the published workflow (Seebens & 
Kaplan, 2022b). The coordinate-based records were then 
assigned to the marine ecoregion as presented by Spalding 
et al. (2007). The spatial representation is still biased towards 
well-investigated regions and records are not cross-checked 
by experts, but the generated data do provide an overview 
across nearly all marine ecoregions worldwide. To consider 
the published data validated by experts, the information 
provided in Bailey et al. (2020) has been used where 
possible and filled in missing regional information by the 
aforementioned data generation methods.

Quantification of data gaps

The lack of information on alien and invasive alien species 
occurrences means that regional lists (i.e., checklists) of 

established alien species are often incomplete, producing 
data gaps. The degree of incompleteness varies by 
taxonomic group, region, and time period (Pyšek et al., 
2008). To assess the influence of data gaps on the trends 
and status presented in this chapter, this assessment 
attempted to quantify the degree of incompleteness. 
As little research has been done previously to assess 
incompleteness, three different indicators of data gaps 
were tested:

1. The number of studies available per region in the chapter 
database was used as a proxy measure for research 
intensity and should negatively relate to data gaps.

2. To measure data gaps across taxonomic groups, the 
number of widespread phyla for which no information 
was available for a particular region was counted. A 
widespread phylum is defined as one with more than 
500 records in the chapter database. Seven phyla were 
determined to be widespread: Ascomycota, Annelida, 
Basidiomycota, Mollusca, Chordata, Arthropoda, 
and Tracheophyta. Different cut-off values (other than 
500 records) for selecting taxonomic groups were 
tested but did not change the overall patterns. The 
number of these phyla with less than five records per 
region was then counted. By applying this approach, 
experts assumed that at least five established alien 
species per selected phylum (i.e., at least five species of 
Tracheophyta per region, five established alien species 
of Arthropoda, etc.) should be found in each region 
as defined in the chapter database. This is likely true, 
particularly for large regions, but might be critical for 
very small regions and small islands. Different versions 
of this indicator were tested using different cut-off values 
(e.g., at least one, three, or ten records) but all versions 
revealed similar spatial patterns of research intensity 
and data gaps (Figure 2 .5 for a spatial representation of 
indicators 1 and 2). 

3. A third indicator was used to describe spatial variation of 
data gaps for individual taxonomic groups by comparing 
the number of available first records of established alien 
species for a region with the total number of species 
recorded for the same region. This analysis provided 
information on the proportion of available first records 
per region and can be used to assess the robustness 
of temporal trends and provide indications about the 
general availability of information for the respective 
taxonomic group. As the biases known for first records 
largely reflect data and knowledge gaps in general, the 
proportion of available temporal information is used as a 
proxy for data completeness.

Although none of these indicators are ideal, they can be 
considered for context when interpretating the trends and 
status of biological invasions.
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2.2 GLOBAL TRENDS AND 
STATUS OF ALIEN AND 
INVASIVE ALIEN SPECIES
This section describes an assessment of the temporal 
trends and status of the distribution of alien and invasive 
alien species globally for all taxonomic groups combined. 

2.2.1 Trends 

Overall, studies on the introduction of alien species over 
time have reported a continuous global increase in the 
number of established alien species consistent across 
taxonomic groups, particularly since the early nineteenth 
century (Aukema et al., 2010; C. Chen et al., 2017; E. 
E. Dyer, Cassey, et al., 2017; S. Henderson et al., 2006; 
Peck et al., 1998; Pyšek et al., 2012; Roy, Preston, et 
al., 2014; Sandvik, Dolmen, et al., 2019; Sax & Gaines, 
2008; Verloove, 2006; Wilson et al., 2007). Indeed, there 
is no study reporting a decline in established alien species 
numbers except for a few islands where eradication 
programmes or stringent biosecurity (Glossary) measures 
have been applied (Simberloff et al., 2013). Distinct 
increases in established alien species numbers are often 
reported post-1950 (Huang et al., 2011; Peck et al., 1998; 
Pyšek et al., 2012; Sandvik, Hilmo, et al., 2019), while 
a few other reports indicate earlier acceleration in the 
nineteenth century (mostly for vascular plants; C. Chen et 
al., 2017; S. Henderson et al., 2006; Seebens, Blackburn, 
et al., 2017; Wilson et al., 2007) or continuous increases 
without periods of acceleration over 200 years (mostly for 
insects; Aukema et al., 2010; Nahrung & Carnegie, 2020) 
and birds (Blackburn et al., 2015). In addition to the rise in 
cumulative established alien species numbers, many studies 
also report rising rates of increase over time (Blackburn et 
al., 2015; Seebens, Blackburn, et al., 2017). Recently, the 
highest global emergence rates of new established alien 
species were reported with approximately 200 new alien 
species, which later became established, recorded annually 
(Seebens, Blackburn, et al., 2017). Declining rates of new 
records of terrestrial alien species were observed only for 
vascular plants in North America (Seebens, Blackburn, et 
al., 2017), insects in Australia (Nahrung & Carnegie, 2020) 
and mammals worldwide (Seebens, Blackburn, et al., 2017). 
As shown in the GRIIS database, numbers of invasive 
alien species show very similar trends over time, but with 
lower numbers in comparison to established alien species 
(Figure 2 .4; Seebens, 2021).

Most studies on selected taxonomic groups, specific 
regions, or global analyses show systematic and constant 
increases in established alien animal species across 
taxonomic groups (e.g., Aukema et al., 2010; Bailey et 
al., 2020; E. E. Dyer, Redding, et al., 2017; Fuentes et al., 

2020; Seebens, Blackburn, et al., 2017). For example, 
bird and mammal introductions mostly occurred in three 
distinct phases: first, historically with the discovery and 
colonization of new lands by Europeans from about 1500 
to 1700; second, mainly through acclimatization societies 
(i.e., associations that encouraged the introduction of alien 
species), particularly via European colonialism from 1700 to 
1900 (e.g., Pipek et al., 2015); and since the 1950s, mostly 
via global trade (Biancolini et al., 2021; Cassey et al., 2015; 
E. E. Dyer, Redding, et al., 2017; Hulme, 2021; Turbelin 
et al., 2017). In contrast to alien homoeotherms, the pet 
trade is the primary cause of herpetofaunal introductions, a 
recently spreading group (Capinha et al., 2017). For insects, 
there are two distinct waves of accelerated introduction 
rates, one between 1820-1914 and one from 1969 to 
present, likely due to intensifying global trade and transport 
(Bonnamour et al., 2021; Roques et al., 2016). Horticulture 
in general including the trade for ornamental purposes 
represents an important pathway for the introduction of 
vascular plants and their pathogens (Figure 2 .2; Hulme, 
2011; van Kleunen et al., 2018). In addition to the total 
number of introduced alien species, the rate of species 
accumulation also continuously increased for most 
taxonomic groups in recent decades (see below), indicating 
a long-lasting intensification of introductions. Mammals 
represent the only exception, showing declines in species 
accumulation rates since about 1950, likely a consequence 
of stricter regulations on animal trade and husbandry and 
limited source pools (Seebens et al., 2018; Simberloff et 
al., 2013).

Once established in a new location, alien species are likely 
to spread to new areas within the introduced range either 
by natural dispersal or by means of human-mediated 
transportation. Approximately 90 per cent of all species 
introduced before 1700 are found today in more than one 
region, indicating further spread or multiple introduction 
events (Seebens, Blackburn, et al., 2021). Spread of an 
alien species usually lasts for decades to centuries (Gassó 
et al., 2010; Roques et al., 2016). Rates of inter-regional 
spread were already high in the nineteenth century for many 
taxonomic groups, and peaked at that time for vascular 
plants, but increased further for other taxa, particularly for 
birds and invertebrates (Seebens, Blackburn, et al., 2021). 
While spread appears to be slowing for a few already 
widespread alien species, it is likely that the vast majority of 
established alien species found currently in only a few sites 
(Pyšek, Pergl, et al., 2017; Seebens, Blackburn, et al., 2021) 
will spread also without human assistance in the near future. 

The increase in numbers of established alien species is 
consistent among IPBES regions (Figure 2 .4). Before 1800, 
numbers of established alien species rose more rapidly in 
Europe and Central Asia, although Europe by far has the 
most records of first year of observations. The differences 
in early records between Europe and Central Asia and 
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other IPBES regions are likely due to different sampling 
intensities (Seebens, Blackburn, et al., 2017). In addition, 
due to time lags (lag phase in the Glossary), the rapid 
increase in researchers studying biological invasions and 
their impacts, and the subtlety of some impacts, the number 
of established alien species, and invasive alien species is 
almost certainly underestimated (Bellard & Jeschke, 2016). 
The steepest increases in established alien species were 
observed from post-1850 to the present, particularly for the 
Americas and the Asia-Pacific regions. These two IPBES 
regions followed similar trajectories of increases from about 
1950 onwards resulting in similar total species numbers in 
2005, between 7,000 and 8,000 established alien species 
for the Americas and the Asia-Pacific regions respectively. 
Note that the total number of recorded established alien 
species is higher than shown in the time series due to 
missing years of first records for most taxa and regions. The 
number of established alien species for Africa is notably low 
and markedly different from other regions. This is a general 
pattern that also holds when species numbers in particular 
taxonomic groups in Africa are plotted separately (Pyšek, 
Hulme, et al., 2020). It is not fully understood why numbers 
are so much lower in Africa, but it is most likely due to 
Africa having lower imports than other regions, a lack of 
information on the year of first records of established alien 
species in Africa, and because the continent is generally 
understudied in terms of biological invasions (Pyšek et al., 
2008; section 2 .4 .2). As classified by GRIIS, numbers of 
invasive alien species show very similar dynamics though 
at a lower number, with correlation coefficients of times 
series over 0.95 for all IPBES regions (Figure 2 .4). The high 
correlation between the distribution of established alien 
species and invasive alien species, which has also been 
reported in other studies (Pyšek, Pergl, et al., 2017), makes 

it very likely that trends and status of invasive alien species 
resemble those of established alien species, noting there are 
less invasive than established alien species.

2.2.2 Status

According to the chapter database underlying the figures 
and tables in this chapter, at least 39,215 alien species 
have been recorded worldwide. As the database does not 
contain all records of alien species (section 2 .1 .4), the true 
number is likely much higher. Of those alien species, 37,215 
are recorded as having established alien populations, while 
5,256 are classified as invasive alien species (section 
2 .1 .4). Note that the total number of invasive alien species 
deviates from the number provided in Chapter 4 due to 
different approaches and data sources. As the number of 
alien species recorded is unequally distributed across the 
globe (Figure 2 .5), because the detectable patterns depend 
upon available data, and because large data gaps remain 
(section 2 .2 .3), it is in some cases difficult to distinguish 
data biases and artifacts from true biological patterns. 
However, with continued research effort, the gaps are 
gradually shrinking. In the terrestrial and marine realms and 
consistent across taxonomic groups, the highest numbers 
of established alien species are found in Europe (particularly 
western Europe), North America, and Australasia (Dawson 
et al., 2017). However, total numbers are higher than shown 
in Figure 2 .4 where only available global databases were 
included. For many regions, particularly several countries in 
Africa, Central Asia and many islands, data are scarce and 
available lists are incomplete. For many marine ecoregions 
(white areas), alien species occurrence data are lacking or 
not yet integrated into larger databases (Figure 2 .5). 
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Figure 2  4   Trends in numbers of established alien species and invasive alien species . 

Total numbers of established alien species (left) and invasive alien species (right) are shown for IPBES regions for 1500-2005. 
Numbers underestimate the true extent of alien species occurrences due to a lack of data (section 2 .1 .4 for further details about data 
processing). A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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Global patterns of established alien species distributions 
were consistently assessed only for selected groups such 
as ants, spiders, amphibians, reptiles, freshwater fishes, 
birds, mammals and vascular plants for 186 islands and 
423 mainland regions by Dawson et al. (2017). This study 
showed that established alien species from these groups 
are unevenly distributed, with some regions (particularly 
Europe, North America, and Australasia) harbouring more 
species than other regions. Although Dawson et al. (2017) 
previously provided the most comprehensive representation 
of established alien species distributions across taxonomic 
groups, their assessment included only two invertebrate 
groups (ants and spiders) and no marine species were 
included because of the lack of comprehensive information. 
The analysis by Dawson et al. (2017) based on the seven 
animal groups revealed two major commonalities: islands 
and coastal areas have greater proportions of established 
alien species in regional faunas, and high numbers of 
established alien species are associated with indicators 
of human activities such as land-use intensity and trade. 
The distribution of established alien species varies by 
taxonomic group. For example, biological invasion hotspots 
of ants are found in South America, equatorial Africa, and 
Southeast Asia (Bertelsmeier et al., 2015), while bird and 
mammal invasions are concentrated in North America, 
western Europe, South Africa, Japan, Australia, and New 
Zealand (Biancolini et al., 2021; E. E. Dyer, Cassey, et al., 
2017). Numbers of established alien species show latitudinal 
trends: alien bird species are greatest at mid-latitudes 
and reflect concomitant variations in human activity, most 
notably the number of species introduced to a particular 
location (E. E. Dyer, Redding, et al., 2017). Below, overviews 

and examples of established alien species are provided for 
different taxonomic groups (Tables 2 .2, 2 .3).

The worldwide distribution of established alien species 
shows a marked latitudinal gradient with the highest species 
numbers reported at mid-latitudes, such as the temperate 
regions of the Northern and Southern Hemispheres, with 
lower numbers in the tropics (Q. Guo et al., 2021; Sax, 
2001). The mechanisms that drive this pattern are not 
yet fully understood but may be positively correlated with 
invasive alien plant density, the human development index, 
and the location of most of well-developed countries in 
temperate regions (Weber & Li, 2008). Greater resistance to 
biological invasions, faster recovery after disturbance due 
to higher diversity, lack of life history traits that confer shade 
tolerance and lower colonization, high predation pressure, 
and propagule pressures (Glossary) are proposed, but not 
proven, to be major causes of lower alien richness in tropical 
continental regions compared to non-tropical regions (Fine, 
2002; Freestone et al., 2011; Isbell et al., 2015; Rejmanek 
& Richardson, 1996). However, on islands the pattern is 
very different, with tropical islands harbouring very high 
numbers established alien species (Moser et al., 2018; 
Rejmanek & Richardson, 1996). Thus, it seems unlikely 
that tropical regions have a greater resistance to biological 
invasions compared to non-tropical regions as they lack 
the characteristics to make them less vulnerable (Chong et 
al., 2021). However, one explanation for lower numbers of 
established alien species in tropical regions is lower levels 
of propagule pressure (i.e., fewer introductions and/or 
smaller introduction size) due to factors such as low import 
volumes. In addition, reduced sampling intensities due to 

Figure 2  5   Numbers of established alien species per region . 

The total number of established alien taxa per mainland region (terrestrial and freshwater) and marine ecoregion (marine) is indicated 
by colour separately. White denotes missing information. Note that marine records were available on different geographic delineations 
and thus marine ecoregions differ in sizes in this figure. Note that numbers may deviate from those reported in the text due to variation 
among data sources. See section 2 .1 .4 for further details about data sources and data processing. A data management report for 
the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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Table 2  3   Numbers of established alien species for various taxonomic groups worldwide .

Species numbers can vary depending on data sources. Note numbers in this table may deviate from those reported in the text due 
to variation among data sources. For mammals, birds, and vascular plants, ranges of values indicate variation among databases 
(section 2 .1 .4 for further details about data sources and data processing). A data management report for the data underlying this 
table is available at https://doi.org/10.5281/zenodo.7615582 

Taxonomic group Number of species

Mammals 197-368

Birds 495-877

Fishes 1,451

Reptiles 411

Amphibians 135

Insects 6,795

Arachnids 500

Molluscs 826

Crustaceans 661

Vascular plants 13,081-18,543

Algae 734

Bryophytes 88

Fungi 1,149

Oomycetes 70

Bacteria and protozoans 38

Table 2  4   Top 10 most widespread invasive alien species worldwide .

The number of regions where a species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table only refers to the distribution of invasive alien species and not their impacts, covered in Chapter 4 (see section 2 .1 .4 for further 
details about data sources and data processing). A data management report for the data underlying this figure is available at https://
doi.org/10.5281/zenodo.7615582 

Organism group Taxon Number of regions

Vascular plant Pontederia crassipes (water hyacinth) 74

Vascular plant Lantana camara (lantana) 69

Mammal Rattus rattus (black rat) 60

Vascular plant Leucaena leucocephala (leucaena) 55

Mammal Mus musculus (house mouse) 49

Mammal Rattus norvegicus (brown rat) 48

Vascular plant Ricinus communis (castor bean) 47

Vascular plant Ailanthus altissima (tree-of-heaven) 46

Vascular plant Robinia pseudoacacia (black locust) 45

Vascular plant Chromolaena odorata (Siam weed) 43

https://doi.org/10.5281/zenodo.7615582
https://doi.org/10.5281/zenodo.7615582
https://doi.org/10.5281/zenodo.7615582
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lower research efforts and fewer monitoring programmes 
also likely contribute to the lower numbers recorded in the 
tropics (Chong et al., 2021).

Comprehensive overviews of the global distribution of 
individual taxonomic groups exist mostly for vascular plants 
(E. J. Jones et al., 2019; Pyšek, Pergl, et al., 2017) and 
vertebrates (mammals, birds, amphibians, reptiles and 
fishes) (Capinha et al., 2017; Dawson et al., 2017; E. E. 
Dyer, Cassey, et al., 2017; Pyšek, Hulme, et al., 2020), with 
the exception of a few invertebrate groups such as spiders 
and ants (Dawson et al., 2017) and land snails (Capinha 
et al., 2015), and bryophytes (Essl et al., 2013). Patterns 
of spatial distribution were similar across most taxonomic 
groups with particularly large numbers of terrestrial alien 
species in Europe, North America, and Australasia (Dawson 
et al., 2017). As an exception, there are large numbers of 
alien fern species in the tropical regions of South America 
and Asia (E. J. Jones et al., 2019). Common explanations 
for the variations observed in the spatial distribution of 
terrestrial alien species include variation in drivers such 
as trade and transport, GDP, high human population 
densities, and the degree of disturbance (Capinha et al., 
2017; Dawson et al., 2017; E. E. Dyer, Cassey, et al., 2017). 
Often alien species originate from neighbouring regions 
or regions connected through trade over long distances 
(D. S. Chapman et al., 2017; L. Henderson, 2006; Pyšek 
et al., 2012). High numbers of terrestrial alien species 
were often found on islands compared to mainlands, with 
remote islands often showing particularly large alien species 
numbers (Blackburn et al., 2008; Moser et al., 2018). While 
it is unknown whether these high numbers can be explained 
by high propagule and colonization pressures (Glossary) 
due to human activities, or instead are a result of the traits of 
the native communities, both factors likely interact to affect 
the outcome of invasions on islands. 

2.2.3 Data and knowledge gaps

Perceptions of the distribution of alien species are highly 
influenced by an unequal global sampling of information 
on alien species occurrences. For example, hotspots 
(Glossary) of alien species occurrences (i.e., areas of high 
alien species richness relative to other regions with similar 
biogeographic characteristics; Dawson et al., 2017) are well-
known to coincide with global hotspots of data availability 
and study sites (L. J. Martin et al., 2012; C. Meyer et al., 
2015), shaping knowledge of species distributions (A. 
C. Hughes et al., 2021). This conclusion is confirmed by 
the information provided in this chapter: mapping of the 
number of available studies, which were used to generate 
the underlying database of this chapter (section 2 .1 .4 for 
further details on the data generation), revealed that regions 
with high level of information on alien species occurrences 
(Figure 2 .6) match the hotspots of established alien species 

occurrences (Figure 2 .5). Hence, knowledge of invasive 
alien species occurrences is biased towards well-sampled 
regions such as Europe and North America and taxonomic 
groups such as vertebrates and plants with the majority of 
studies conducted in recent decades (Bellard & Jeschke, 
2016; Jeschke et al., 2012; Pyšek et al., 2008). It remains 
unclear how much of the distributions of alien species and 
documented hotspots is affected by spatial variation in 
research intensity. The investigation of data availability as 
described in section 2 .1 .4 showed extensive data gaps, 
particularly in large parts of Africa, Central Asia and on 
islands worldwide (Figure 2 .6). 

In addition to regional biases, research intensities vary 
across taxonomic groups. There is considerably more 
information available on the distribution of alien and 
invasive alien species for vertebrates, particularly mammals 
(section 2 .3 .1 .1), birds (section 2 .3 .1 .2), and vascular 
plants (section 2 .3 .2 .1) than for other taxa. In general, 
there are large data and knowledge gaps for invertebrates 
and microorganisms. While most information about 
invertebrates is available for insects, crustaceans, and 
molluscs, these data are still incomplete for many regions of 
the world (sections 2 .3 .1 .6, 2 .3 .1 .8, 2 .3 .1 .9). Information 
for other invertebrate groups is extremely scarce. Globally 
little information is available for alien microorganisms 
and recorded distributions are often biased towards 
individual studies. Across realms, the greatest amount 
of information is available for terrestrial habitats (section 
2 .5 .1), while information for aquatic (marine, freshwater 
and brackish) alien species is often lacking (sections 
2 .5 .2, 2 .5 .3). Consequently, the lists of alien species for 
individual regions are, in most cases, incomplete, even 
for well-sampled regions due to the lack of information 
about microorganisms and invertebrates, for example, 
and the degree of incompleteness varies highly among 
regions globally.

Most of the information about alien species occurrences 
is available at the national scale for whole countries, while 
information on sub-national units such as federal states, 
provinces, protected areas, or private land is usually lacking. 
Information about occurrences is particularly scarce for 
lands and waters managed by Indigenous Peoples and 
local communities (Box 2 .6). Furthermore, information 
about abundances and changes in abundances of alien 
populations is available only in a few cases and is not 
consistently recorded across regions and taxa. Additional 
uncertainty in the records of alien and invasive alien species 
occurrences arises from time delays frequently observed 
between the actual species introduction and its first record 
as a new population outside its native range (Crooks, 2005). 
For vascular plants, these time lags have been estimated 
to be on average 20 years (Seebens et al., 2015), while for 
individual cases time delays of up to 150 years have been 
recorded (Kowarik, 1995b).
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2.3 GLOBAL TRENDS AND 
STATUS OF ALIEN AND 
INVASIVE ALIEN SPECIES BY 
TAXONOMIC GROUPS

2.3.1 Animals
This section reports on the temporal trends and status of 
the distribution of alien and invasive alien animal species for 
various animal groups, namely mammals (section 2 .3 .1 .1), 
birds (section 2 .3 .1 .2), fishes (section 2 .3 .1 .3), reptiles 
(section 2 .3 .1 .4), amphibians (section 2 .3 .1 .5), insects 
(section 2 .3 .1 .6), arachnids (section 2 .3 .1 .7), molluscs 
(section 2 .3 .1 .8), crustaceans (section 2 .3 .1 .9), and 
other invertebrates (section 2 .3 .1 .10), as well as data and 
knowledge gaps (section 2 .3 .1 .11). 

2.3.1.1 Mammals 

Trends 

Because they were useful, mammals were among the first 
species introduced by humans, and the first records of 
introduced alien mammals date back thousands of years 
(Genovesi et al., 2012). For example, mammals have been 
used as pack animals, for meat and fur, ornamentals, 
biocontrol agents, and pets since the expansion of humans 
from Africa to other continents (Clout & Russell, 2008; Long, 
2003; Simberloff & Rejmanek, 2011). During prehistoric and 
historic human migration, humans transported mammals 
to new areas to create wild populations for settlers to 
hunt (Clout & Russell, 2008; Long, 2003; Simberloff & 
Rejmanek, 2011), peaking with European colonization. As a 
consequence, there were high numbers of alien mammals 
as early as 500-200 years ago (Figure 2 .7). During the 

Figure 2  6   Research intensity and data gaps for global established alien species 
distribution records .

Research intensity (top) is indicated by the number of studies available in the chapter database. Data gaps (bottom) were determined 
as the lack of information for the seven most common phyla as recorded in the chapter database per region. Largest data gaps 
are apparent in Africa, Central Asia, and for many islands (section 2 .1 .4 for further details about data sources and data processing 
for further details of the analysis). Islands are indicated by dots and circles, respectively. A data management report for the data 
underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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nineteenth century, a further acceleration of new records 
occurred (Biancolini et al., 2021) when specific organizations 
(i.e., acclimatization societies) focused on alien species 
release to aesthetically “improve” the landscape and local 
fauna of colonial territories (Osborne, 2000; Simberloff 
& Rejmanek, 2011). In recent decades, the dominant 
pathways of mammal introductions have shifted from 
hunting and “faunal improvement” to the pet trade likely due 
to stricter regulations targeting alien mammals (Simberloff 
et al., 2013). Many mammal introductions outside of their 
native ranges were also carried out for conservation, and to 
protect mammal species from overhunting, habitat loss, and 
invasive alien predators (Biancolini et al., 2021; Seddon et 
al., 2015; Woinarski et al., 2015). 

Status

The biological invasion history and status of mammals are 
among the best documented of alien animal taxa (Biancolini 
et al., 2021; Blackburn et al., 2017; Clout & Russell, 
2008; Long, 2003). At present, 241 mammal species 
have established alien populations globally, causing many 
and diverse environmental impacts, especially on insular 
ecosystems (Glossary; Biancolini et al., 2021; Blackburn 
et al., 2017; Clout & Russell, 2008; Chapter 4, section 
4 .3 .1 .1). If the few records of unsuccessful and unconfirmed 
introductions are included, at least 274 mammal species 

have been introduced by humans to new locations 
(Blackburn et al., 2017; Zenni & Nuñez, 2013). 

According to the global Distribution of Alien Mammals 
database (DAMA), Asia has the highest number of 
established alien mammals (95), followed by North America 
(79), Europe (76), Australia (54), Africa (52), Oceania (50), 
and South America (42) (Biancolini et al., 2021). The 
major global donors of alien mammal species are Asia (91 
established alien species) and Europe (34), Australia (32), 
North America (31), Africa (30), and South America (23 
alien species). An outgoing species flow directed to other 
continents is predominant for Europe and Asia, while an 
intracontinental flow (i.e., alien species introduced to other 
parts of their native continent) is common for Australia (74 
per cent of all alien Australian mammals), North America (61 
per cent), South America (5 per cent), and Africa (56 per 
cent). Other countries of Oceania received species only from 
other continents (Biancolini et al., 2021). 

Globally, the vast majority (81 per cent) of alien mammal 
records are found on islands (Biancolini et al., 2021), most 
likely due to the higher vulnerability to biological invasions of 
insular ecosystems and greater propagule and colonization 
pressure on islands relative to mainland systems (Dawson 
et al., 2017; Moser et al., 2018). Moreover, alien mammals 
occur on 97 per cent of islands that harbour highly 

Figure 2  7   Status, trends, and data gaps for established alien mammals .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted to aid visualization and do not 
indicate species numbers. Trends are shown in lower panels as cumulative numbers and as a rate of increase (i.e., numbers of alien 
species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data sources 
and data processing). Note presented numbers may deviate from those reported in the text due to variation among data sources. A 
data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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threatened vertebrate species (Spatz et al., 2017). Among 
the orders richest in alien mammals, the highest per 
centage globally is for Rodentia (58 species, 25 per cent), 
Cetartiodactyla (49 species, 21 per cent), Carnivora (30 
species, 13 per cent), Diprotodontia (28 species, 12 per 
cent) and Primates (26 species, 11 per cent) (Biancolini et 
al., 2021). Some alien mammals such as Rattus spp. (rats), 
Mus musculus (house mouse) and Felis catus (cat) are so 
common that they are often not recognized as invasive alien 
species in mainland regions (Long, 2003; Loss & Marra, 
2017), and thus are missing from lists of alien species. 
Several of these mammals have lived in close proximity 
to humans for a very long time resulting in long-lasting 
commensalisms (Puckett et al., 2020) and in the spread of 
these species globally.

Many of the most widespread invasive alien mammals 
worldwide (Table 2 .5), such as feral domestic species 
and commensal stowaways, can exploit human-disturbed 
environments (Biancolini et al., 2021; Long, 2003). On 
islands and in Australia, where invasive alien mammals are 
the main cause of extinction and native species declines 
(Courchamp et al., 2003; Woinarski et al., 2015), they 
are subject to many control and eradication measures 
(DIISE, 2020; H. P. Jones et al., 2016; Parkes et al., 2017; 
Russell et al., 2015, 2016). Other notorious global invasive 
mammals include Herpestes javanicus auropunctatus 
(small Indian mongoose), Oryctolagus cuniculus (rabbits), 
Lepus europaeus (European hare), Dama dama (fallow 
deer), Camelus dromedarius (dromedary camel), Ondatra 
zibethicus (muskrat), Mustela vison (American mink), 
Myocastor coypus (coypu), Procyon lotor (raccoon), 
Nyctereutes procyonoides (raccoon dog), Vulpes vulpes 
(red fox), Sus scrofa (feral pig), Capra hircus (goats), Ovis 
aries (sheep), Equus asinus (donkeys), Equus caballus 
(horse), Bos taurus (cattle), and Canis lupus familiaris 

(dogs) (Biancolini et al., 2021; Blackburn et al., 2017; 
Clout & Russell, 2008; Long, 2003; Louppe et al., 2020). 
Mammals are the most widespread group of invasive alien 
animal species in terms of the number of regions invaded 
(Table 2 .5).

2.3.1.2 Birds 

Trends 

Birds have been introduced for thousands of years, but 
a notable acceleration of introductions occurred in the 
mid-nineteenth century arising from increasing European 
colonial expansion and an acclimatization of alien species 
considered to be beneficial. The origins and introduction 
sites of alien birds during this period reflects the geography 
of colonialism, and the locations of former British colonies (E. 
E. Dyer, Cassey, et al., 2017), and especially hotspots such 
as New Zealand, Australia, Hawaii, and the Mascarenes. In 
this period, alien species were mainly deliberately introduced 
for game or ornamentation such as gallinaceous birds, 
wildfowl, and pigeons (E. E. Dyer, Cassey, et al., 2017). Other 
alien species were introduced for biocontrol of agricultural 
insect pests such as Acridotheres tristis (common myna) 
introduced from India to Mauritius to control Nomadacris 
septemfasciata (red locust) in 1762 (Shaanker & Ganeshaiah, 
1992; Simmonds et al., 1976).

Introduction rates again accelerated in the mid-twentieth 
century most likely due to increasing trade volumes, 
particularly for birds imported and exported for the pet trade 
(Figure 2 .8). Most recent introductions, reflected in the 
taxonomic composition, stem from unintentional escapes or 
releases from the caged bird trade. Commonly introduced 
species are parrots, estrildid finches, mynas, and starlings 
(E. E. Dyer, Cassey, et al., 2017). 

Table 2  5   Top 10 most widespread invasive alien mammal species worldwide .

The number of regions where a species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table only refers to the distribution of invasive alien mammal species, not impacts which are covered in Chapter 4 (see section 2 .1 .4 
for further details about data sources and data processing). “No. of regions” denotes the number of regions with confirmed 
occurrences of that species according to the chapter database. A data management report for the data underlying this figure is 
available at https://doi.org/10.5281/zenodo.7615582 

Taxon No . of regions Taxon No . of regions 

Rattus rattus (black rat) 60 Capra hircus (goats) 30

Mus musculus (house mouse) 49 Myocastor coypus (coypu) 21

Rattus norvegicus (brown rat) 48 Oryctolagus cuniculus (rabbits) 20

Felis catus (cat) 38 Mustela vison (American mink) 18

Sus scrofa (feral pig) 32 Canis lupus familiaris (dogs) 15
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Status

Alien birds have been introduced to nearly all regions 
worldwide including many small islands (E. E. Dyer, Cassey, 
et al., 2017; Evans, 2021). Global patterns of established 
alien bird species richness show relatively low numbers of 
alien birds in most parts of the world (though local numbers 
can be very high, e.g., more than 90 species in Hawaii), 
but very few regions without established alien bird species 
(Dawson et al., 2017). E. E. Dyer, Cassey, et al. (2017) 
showed that colonization pressure (and to a smaller extent, 
distance from an historic port) was the key driver related to 
alien bird species richness, and that accounting for these 
factors, alien bird richness was also higher in areas with high 
native bird species richness. Thus, a range of environmental, 
life history, and anthropogenic factors determine areas with 
high alien bird richness.

A global analysis of historical data on bird introductions 
showed that environmental conditions at introduction sites 
are the primary determinants of successful establishment 
(Redding et al., 2019). While climatic suitability is particularly 
important, the presence of other alien species can lead to 
an accumulation of alien species in “hotspots” potentially 
facilitating the establishment of additional species (termed 
“invasional meltdown”; Glossary and Chapter 1, section 
1 .3 .4). Establishment of alien species is also more likely 

when extreme weather events do not occur in the decade 
following an introduction, suggesting that environmental 
stochasticity is important to the persistence of small 
populations (Redding et al., 2019). Species-level traits, 
notably generalist species and founding population size, 
exert important secondary effects on success (Redding et 
al., 2019). Generalist species are more likely to establish 
self-sustaining populations, as are species introduced in 
greater numbers (Cassey et al., 2018; Redding et al., 2019). 
Birds are strong dispersers, a trait that facilitates biological 
invasion success post-introduction (Cassey et al., 2015). 
For example, of about 60 pairs of birds first introduced 
before the twentieth century to Central Park, New York 
City, Sturnus vulgaris (common starling) now numbers 
approximately 200 million individuals in the United States of 
America (Linz et al., 2007). 

Globally, particularly problematic invasive alien birds include 
Anas platyrhynchos (mallard), Acridotheres tristis (common 
myna), Pycnonotus jocosus (red-whiskered bulbul) (Martin-
Albarracin et al., 2015), Nesoenas picturatus (Madagascar 
turtle dove), Pitangus sulphuratus (great kiskadee), Tyto 
novaehollandiae (Australian masked owl), Tyto alba (barn 
owl), and Bubo virginianus (great horned owl) (Evans et 
al., 2016). The 10 most widespread species are listed in 
Table 2 .6.

Figure 2  8   Status, trends, and data gaps for established alien birds .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note numbers presented may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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2.3.1.3 Fishes

Trends

Freshwater fish invasions are one of the best documented 
biological invasions among animal taxa with considerable 
information available on invasive alien fish traits, invaded 
regions, and invasion pathways (Bernery et al., 2022). 
Information for marine fish invasions is much more 
fragmented (e.g., Arndt et al., 2018; Vignon & Sasal, 2010). 
Globally, the number of invasive alien fishes accelerated 
in the twentieth century (Figure 2 .9). Although one might 
conclude that saturation has been reached based on the 
figure displaying the number of established alien species 
per five-year intervals, the lag between species introduction, 
reports of the introduction in the literature, and the 
cumulative numbers worldwide for this taxonomic group 
suggest that this is not the case (Seebens, Blackburn, et al., 
2017). Even though introductions of fish outside their natural 
ranges worldwide increased substantially at the onset of the 
industrial revolution, first records of alien fish introductions 
date back at least to the Roman Empire in Europe (first and 
second century; Balon, 1995). 

Currently, the rate of newly established alien fish species 
is still very high, higher than for most other taxa (Seebens, 
Blackburn, et al., 2017), partially explaining why fish are 
among the most widespread invasive alien taxonomic 
group (Gozlan, 2008). Globally, many fish species have 
been and are often still introduced intentionally, although 
unintentional introductions also occur. Due to widespread 
intentional introductions, alien freshwater fish species occur 
in all biogeographic regions (Leprieur et al., 2008). Due 
to the compounding effects of increased global maritime 
transportation, canal construction, and climate change, 
the number of alien marine fish also rose dramatically in 
the twentieth and twenty-first centuries. These same three 

factors may also further promote biological invasions of fish 
in the future (Castellanos-Galindo et al., 2020; Cohen, 2006; 
Muirhead et al., 2015; Ruiz et al., 2006).

Status

The most widespread alien fish species are listed in 
Table 2 .7 demonstrating the very high number of regions 
invaded by this group, second only to mammals in terms of 
distribution. 

Dawson et al. (2017) showed that alien freshwater fish 
were distributed in six global biological invasion hotspots 
where established alien species constituted over 25 per 
cent of total species richness. When considering within 
country introductions, which are frequently not included in 
global analyses, the number of alien fishes increased for 
large countries such as Brazil, the People’s Republic of 
China, and the United States (Vitule et al., 2019). Pathways 
of fish biological invasions vary and include inter-oceanic 
canals, ballast water, intentional introductions for fishing 
or fisheries stocking, ornamental purposes, and escapes 
from aquaculture. For example, many alien populations of 
salmonids, tilapias, and carps originated from aquaculture 
escapes (Froese & Pauly, 2015). The Center for Food 
Safety reported about 26 million escaped fish worldwide 
between 1996 and 2012 (CFS, 2012). Similarly, D. 
Jackson et al. (2015) reported almost 9 million escapees 
in six European countries over a 3-year period. Estimates 
suggest that in Chile more than 1 million salmonids escape 
annually from the net pens of salmon farms (Sepúlveda et 
al., 2013; Thorstad et al., 2008). Marine waters are also 
inhabited by many alien fishes. The opening of the Suez 
Canal has enabled the migration of species from the Red 
Sea into the Mediterranean Sea (known as Lessepsian/
Erythraean invasion), which has caused the influx of more 

Table 2  6   Top 10 most widespread invasive alien bird species worldwide .

The number of regions where the respective species has been recorded and classified as being invasive based on GRIIS (Pagad et 
al., 2022). Note this table only refers to the distribution of invasive alien bird species, not impacts, which are covered in Chapter 4 
(see section 2 .1 .4 for further details on data sources and processing). “No. of regions” denotes the number of regions with confirmed 
occurrences of that species according to the chapter database. A data management report for the data underlying this figure is 
available at https://doi.org/10.5281/zenodo.7615582 

Taxon No . of regions Taxon No . of regions 

Acridotheres tristis (common myna) 22 Branta canadensis (Canada goose) 9

Columba livia (pigeons) 20 Alopochen aegyptiaca (Egyptian goose) 8

Corvus splendens (house crow) 17 Sturnus vulgaris (common starling) 8

Passer domesticus (house sparrow) 14 Myiopsitta monachus (monk parakeet) 7

Psittacula krameri (rose-ringed parakeet) 13 Phasianus colchicus (common pheasant) 6
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than 400 Indo-Pacific species into the Mediterranean Sea, 
including over 100 (118 by latest tally, unpublished) fish 
species (Bariche & Fricke, 2020; Çinar et al., 2021; Galil 
et al., 2021b), resulting in considerable changes to fish 
communities and fisheries, particularly in the Levant basin 
to date (Arndt et al., 2018; Arndt & Schembri, 2015; Galil 

et al., 2007). Both Pterois volitans (red lionfish) and Pterois 
miles (lionfish) have invaded large areas of the north-western 
Atlantic imposing large impacts on prey populations of 
native species and local fisheries (Côté et al., 2013), and 
Pterois miles is now spreading within the Mediterranean 
Sea (Poursanidis et al., 2020). Species of peacock basses 

Figure 2  9   Status, trends, and data gaps for established alien fishes .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by 
colour. The amount of available data is estimated by the proportion of available first records among all records available for that 
region (section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted to aid visualization and do 
not indicate species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers 
of established alien species per five years). Smoothed trend (line) is calculated as a running median (section 2 .1 .4 for further 
details about data sources and data processing). Note numbers presented may deviate from those reported in the text due to 
variation among data sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/
zenodo.7615582

Table 2  7   Top 10 most widespread invasive alien fish species worldwide .

The number of regions where the top 10 most widespread fishes have been recorded and classified as invasive based on GRIIS 
(Pagad et al., 2022). Note this table only refers to the distribution of invasive alien species rather than impacts which are covered 
in Chapter 4 (see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number 
of regions with confirmed occurrences of that species according to the chapter database. A data management report for the data 
underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Taxon No . of regions Taxon No . of regions 

Cyprinus carpio (common carp) 43 Poecilia reticulata (guppy) 22

Gambusia holbrooki (eastern mosquitofish) 42 Pseudorasbora parva (topmouth gudgeon) 22

Oreochromis niloticus (Nile tilapia) 28 Gambusia affinis (western mosquitofish) 19

Oreochromis mossambicus (Mozambique 
tilapia) 

25 Lepomis gibbosus (pumpkinseed) 19

Oncorhynchus mykiss (rainbow trout) 23 Micropterus salmoides (largemouth bass) 18
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(genus Cichla), native to South America, have been 
introduced to tropical and sub-tropical regions worldwide for 
fisheries (Franco et al., 2022).

2.3.1.4 Reptiles 

Trends

The introduction of alien reptiles has a long history 
associated with the movement of humans and trade 
routes. For example, introduced species such as Tarentola 
mauritanica (common wall gecko) and Vipera aspis (asp 
viper) in the Mediterranean Basin can be traced back to 
the fourth century B.C. and the fifth century, respectively 
(Masseti & Zuffi, 2011; Mateo et al., 2011; Pleguezuelos, 
2002). Since 1800, the number of first records of alien 
reptiles globally has been rising steadily, accelerating since 
1950 (Capinha et al., 2017; Kraus, 2009). Similar trends 
have also been reported at local and regional scales (Krysko 
et al., 2011, 2016; Mateo et al., 2011; Perella & Behm, 
2020; Powell et al., 2011; Toomes et al., 2020). Most 
alien reptile introductions through the end of the twentieth 
century were due to the unintentional transport of species 
as stowaways or contaminants (Kraus, 2009; Lever, 2003). 
This pathway remains important, but the pet trade has also 
emerged as a significant source of alien reptiles in recent 

decades (É. Fonseca et al., 2019; Lockwood et al., 2019; 
Perella & Behm, 2020; Stringham & Lockwood, 2018; Van 
Wilgen et al., 2010). 

Contemporary trends (Figure 2 .10), the expected increase 
in pet trade as a source of new species, and model-based 
projections of future distributions all indicate that both the 
number of alien reptiles and the number of invaded areas 
will continue to increase (Chapple et al., 2016; da Rosa et 
al., 2018; Filz et al., 2018; Gippet & Bertelsmeier, 2021; 
X. Li et al., 2016; X. Liu et al., 2014; Seebens, Blackburn, 
et al., 2017). Alien reptiles are fast becoming an important 
group of alien vertebrates alongside other taxa such as birds 
and mammals. In Australia, alien reptiles have been the 
dominant group of alien terrestrial vertebrates intercepted 
and detected at large since 1999 (Toomes et al., 2020).

Status

Established populations of alien reptiles are found in all the 
IPBES regions except for the polar areas (Capinha et al., 
2017; Kraus, 2009). Islands and areas with relatively warm 
climates and high economic and human activity tend to 
host more alien reptiles than other places (Capinha et al., 
2017; É. Fonseca et al., 2019; Moser et al., 2018; Silva-
Rocha et al., 2019). Of the top five global hotspots for alien 

Figure 2  10  Status, trends and data gaps for established alien reptiles .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization purposes and do 
not indicate species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of 
established alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about 
data sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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reptiles, the top three are in North America (Florida, Hawaii, 
and California), Europe (Balearic Islands, Spain), and Japan 
(Capinha et al., 2017; Krysko et al., 2011, 2016; Mateo et 
al., 2011; Meshaka, 2011; Silva-Rocha et al., 2015).

At least 198 reptile species belonging to three major 
reptile orders (Squamata, Crocodilia, and Testudines) have 
established alien populations worldwide (Capinha et al., 
2017). Of the top five most commonly established alien 
reptiles, four species (Indotyphlops braminus (brahminy 
blind snake), Hemidactylus frenatus (common house 
gecko), Hemidactylus mabouia (tropical house gecko), 
and Hemidactylus turcicus (Mediterranean house gecko)) 
have been transported unintentionally, and one (Trachemys 
scripta (pond slider)) is common in the pet trade (Capinha 
et al., 2017; García-Díaz et al., 2015; Kraus, 2009; Masin 
et al., 2014). Some of the above species are among the 
10 most widespread of all invasive alien reptiles worldwide 
(Table 2 .8). The establishment success and spread rates of 
alien reptiles are associated with high propagule pressure, 
the degree of climate matching between native and recipient 
regions, presence of congenerics, and high reproductive 
output (W. L. Allen et al., 2017; Bomford et al., 2009; X. 
Liu et al., 2014; Mahoney et al., 2014; Tingley et al., 2016; 
Van Wilgen & Richardson, 2012). As examples, Python 
bivittatus (Burmese python) is spreading in the Florida 
Everglades, preying upon many species including the apex 
native predator Alligator mississippiensis (American alligator; 
Dorcas et al., 2012). Invasive alien Boiga irregularis (brown 
tree snake) has reached iconic status as one of the most 
impactful invasive alien species worldwide. Fewer than 10 
individuals were unintentionally introduced from the United 
States into the Pacific Island of Guam following World War 

II (Richmond et al., 2015). This species has since colonized 
all habitats on Guam, from grasslands to forests, with peak 
densities as high as 10,000 individuals per km2 (Rodda et 
al., 1992). Several lesser known and potentially invasive 
alien reptiles are emerging including Varanus niloticus (Nile 
monitor) in Florida, Lampropeltis getula (common kingsnake) 
in the Canary Islands, Boa constrictor (boa constrictor) on 
Aruba, and several giant constrictor snakes in Puerto Rico 
(Reed & Kraus, 2010).

2.3.1.5 Amphibians 

Trends 

Alien amphibian introductions are not a new phenomenon. 
For instance, the introduction of Bufotes balearicus (Balearic 
green toad) to the Balearic Islands, Spain, is assumed to 
have occurred around the second century B.C. (Mateo et 
al., 2011; Pleguezuelos, 2002). However, the accumulation 
of first records of alien amphibians shows a global rise since 
1800 with a slightly more pronounced increase after the 
1950s (Capinha et al., 2017; Kraus, 2009, 2011). Similar 
patterns of relative increases in both the number of new alien 
species and the number of records of alien amphibians have 
been reported regionally and locally (Krysko et al., 2011, 
2016; Mateo et al., 2011; Powell et al., 2011; Toomes et 
al., 2020). Nevertheless, the implementation of biosecurity 
and rapid response activities in countries such as New 
Zealand and Australia has likely prevented new introductions 
and establishment of alien amphibians (Chapple et al., 
2016; García-Díaz et al., 2017; Toomes et al., 2020). The 
United States appears to be an outlier in terms of new 
introductions; both the number of alien amphibian species 

Table 2  8   Top 10 most widespread invasive alien reptile species worldwide .

The table shows the number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et 
al., 2022). Note this table refers only to the distribution of invasive alien species, not their impacts which are covered in Chapter 4 
(see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with 
confirmed occurrences of that species according to the chapter database. A data management report for the data underlying this 
figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Trachemys scripta elegans (red-eared 
slider)

15 Chelydra serpentina (common snapping turtle) 4

Hemidactylus frenatus (common house 
gecko)

12 Anolis cristatellus (Puerto Rican crested anole) 4

Hemidactylus mabouia (tropical house 
gecko)

12 Anolis porcatus (Cuban green anole) 3

Iguana iguana (iguana) 8 Hemidactylus turcicus (Mediterranean house 
gecko)

3

Anolis sagrei (brown anole) 5 Pelodiscus sinensis (Chinese soft-shelled 
turtle)

3
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reported annually and the number of records per year have 
remained relatively stable since around the mid-twentieth 
century (Mangiante et al., 2018). It is important to note 
that in 2016 the United States Fish and Wildlife Service 
published an interim rule listing 201 salamander species as 
injurious wildlife under the Lacey Act to prevent the arrival of 
Batrachochytrium salamandrivorans (chytrid fungus) carried 
by alien species in the trade. Similarly, in 2017, Canada 
restricted salamander importation for the same reason (Yap 
et al., 2017).

Status

Intentional and unintentional pathways are virtually 
equivalent contributors to the current distribution and status 
of alien amphibians worldwide, but their role varies by 
region and period (Kraus, 2009; Lever, 2003). For example, 
individuals of several toad species (family Bufonidae), such 
as Rhinella marina (cane toad) and Sclerophrys gutturalis 
(guttural toad), were deliberately released as biocontrol 
agents in the Indo-Pacific and Caribbean islands during 
the first half of the twentieth century (Kraus, 2009; Lever, 
2003; Powell et al., 2011; Shine, 2018; Telford et al., 
2019). More recently, Duttaphrynus melanostictus (Asian 
common toad) has been unintentionally transported to 

many areas in the Indo-Pacific region (Mo, 2017; Moore 
et al., 2015; Tingley et al., 2018; Vences et al., 2017). 
The two most widespread alien amphibians in the world, 
Lithobates catesbeianus (American bullfrog) and Rhinella 
marina, have been introduced as a source of food and for 
biocontrol purposes, respectively (Capinha et al., 2017; 
Kraus, 2009; X. Liu et al., 2012, 2015; Shine, 2018). In 
Australia, almost twice the number of alien amphibians was 
found introduced through the pet trade compared to the 
stowaway pathway (71 and 38, respectively), yet the latter 
is a more important pathway when considering the total 
number of individuals moved rather than the number of 
species (García-Díaz & Cassey, 2014; Toomes et al., 2020). 
Unintentional pathways are responsible for 12 out of 13 alien 
amphibians present in Guam (Christy, Clark, et al., 2007). 
The pet trade is expected to remain a prominent source of 
new alien amphibian introductions in the near and medium-
term (Lockwood et al., 2019; Mohanty & Measey, 2019; 
Stringham & Lockwood, 2018).

The diversity of transport pathways responsible for the 
introduction of alien amphibians has resulted in established 
alien amphibian populations in all IPBES regions except 
for polar areas (Figure 2 .11; Capinha et al., 2017; Christy, 
Savidge, et al., 2007; É. Fonseca et al., 2019; García-Díaz 

Figure 2  11  Status, trends, and data gaps for established alien amphibians .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by 
colour. The amount of available data is estimated by the proportion of available first records among all records available for that 
region (section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization purposes 
and do not indicate species numbers. The trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., 
numbers of established alien species per five years). Smoothed trend line is calculated as running median (section 2 .1 .4 for further 
details about data sources and data processing). Note presented numbers may deviate from those reported in the text due to 
variation among data sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/
zenodo.7615582
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& Cassey, 2014; Kraus, 2009; Measey et al., 2017; Rago 
et al., 2012; Tingley et al., 2010). The United Kingdom, 
and California, Hawaii, and Puerto Rico (United States) 
are the top-four global hotspots of alien amphibians, each 
with more than five species established (Capinha et al., 
2017; Kraus, 2009; Powell et al., 2011). Alien amphibian 
richness tends to be higher on islands and in places with 
high precipitation, high potential evapotranspiration, and 
high levels of economic activity (Capinha et al., 2017; 
É. Fonseca et al., 2019; Poessel et al., 2012). High 
propagule pressure, the presence of congeneric species, 
life-history traits related to rapid growth and reproduction, 
and environmental similarity between the recipient and 
the native ranges are associated with the establishment 
success and invasion rates of alien amphibians (W. L. Allen 
et al., 2017; Bomford et al., 2009; Ferreira et al., 2012; 
K. Li et al., 2016; X. Liu et al., 2014; Poessel et al., 2012; 
Rago et al., 2012; Tingley et al., 2010, 2011; Van Wilgen 
& Richardson, 2012). It is interesting to note that many 
species native to Southern Africa have been introduced 
elsewhere, while few alien amphibians are reported for 
Southern Africa due to a very low trade involving these 
animals (Measey et al., 2017).

The reported trajectories, combined with invasive alien 
amphibian niche shifts and the increase in pet trade, point to 
future increases in both the number of new alien amphibians 
and the number of regions occupied (Capinha et al., 2017; 
Chapple et al., 2016; da Rosa et al., 2018; Mohanty et al., 
2021; Mohanty & Measey, 2019; Pili et al., 2020; Toomes 
et al., 2020). Additionally, invasion debts (i.e., the additional 
area an invasive alien species is likely occupy in the future; 
Glossary) mean that the accelerating trends in introductions 
described above could lead to established populations 
unless rapid response management actions are taken 
(Chapple et al., 2016; M. J. Spear et al., 2021).

Notorious invasive amphibians include Rhinella marina (cane 
toad), a large and toxic toad native to Mesoamerica and 
introduced worldwide into sugar cane producing regions to 
control beetles causing crop damage (Shanmuganathan et 
al., 2010). Xenopus laevis (African clawed frog) is among the 
most commonly used laboratory animals (e.g., basic biology 
and formerly for pregnancy testing); many populations 
originating from laboratories have become invasive in 
regions with a Mediterranean climate. Table 2 .9 lists the 10 
most widespread invasive alien amphibians and the number 
of regions each has invaded. 

2.3.1.6 Insects

Trends 

Since Insecta is the largest animal class it comes as no 
surprise that global numbers of alien insect species vastly 
exceed numbers for all other animal taxa combined by 1.7 
times (Seebens, Blackburn, et al., 2017). Yet, their biological 
invasions are still likely underreported as insects are less 
studied relative to other organisms such as vertebrates. 

While there are a few rare documented cases of natural 
intercontinental insect spread (e.g., via wind) (Hoffmann & 
Courchamp, 2016), the long-distant spread of alien insects 
has risen steeply due to the facilitation by recent human 
activities (Gippet et al., 2019; Meurisse et al., 2019). Early 
exploration and colonial settlements facilitated the global 
range extension of several insect species, but higher rates of 
alien species establishment did not begin until approximately 
1820 and lasted until 1914. This was followed by a second 
wave of accelerated establishment post-1960 (Bonnamour 
et al., 2021). These periods coincided with the industrial 
revolution; increased global trade and travel facilitated 
accidental movement of insects with plants, plant products, 

Table 2  9   Top 10 most widespread invasive alien amphibian species worldwide .

The table shows the number of regions where the respective species has been recorded and classified as being invasive based on 
GRIIS (Pagad et al., 2022). Note that this table only refers to the distribution of invasive alien species rather than their impacts, which 
is covered in Chapter 4 (see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the 
number of regions with confirmed occurrences of that species according to the chapter database. A data management report for the 
data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Lithobates catesbeianus (American bullfrog) 24 Pelophylax ridibundus (Eurasian marsh frog) 3

Rhinella marina (cane toad) 14 Duttaphrynus melanostictus (Asian common 
toad)

2

Xenopus laevis (African clawed frog) 9 Eleutherodactylus coqui (Caribbean tree frog) 2

Triturus carnifex (Italian crested newt) 3 Eleutherodactylus planirostris (greenhouse frog) 2

Eleutherodactylus johnstonei (whistling frog) 3 Andrias davidianus (Chinese giant salamander) 1
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general cargo, and baggage (Bertelsmeier et al., 2017; 
Bonnamour et al., 2021). Much of the global distribution of 
alien insects is driven by plant biological invasions (Chapter 
3, section 3 .3 .5 .1); many insects are dependent on 
individual plant species or genera, so establishment of alien 
plant species provides necessary resources that facilitate 
insect establishment (Liebhold et al., 2018). Some evidence 
indicates that the recent implementation of biosecurity 
practices has reduced the proportion of imports contaminated 
with insects (Leung et al., 2014; Liebhold & Griffin, 2016), but 
imports have also simultaneously and massively increased 
at the same time. While insects are such a large group 
that some specific variation may be masked, the resulting 
trend is a net increase. Indeed, as a group, they have even 
exponentially increased since the start of the nineteenth 
century, both in terms of cumulative numbers and number 
of established alien species per five-year intervals (Figure 
2 .12), and still show no sign of saturation (Bonnamour et 
al., 2021; Seebens, Blackburn, et al., 2017). The continued 
increase of global trade and climate change will likely further 
accelerate for these easily transported and climate-sensitive 
organisms (Bellard, Thuiller, et al., 2013). Additional factors 
could contribute to further spread (e.g., large infrastructure 
projects; Galil, Boero, Campbell, et al., 2015; X. Liu et al., 
2019; Muirhead et al., 2015) or establishment (e.g., industrial 
rearing of insects for food; Bang & Courchamp, 2021) of both 
existing and new invasive alien insects. 

Status
Global estimates of the total number of alien insects are 
not available but likely exceed 10,000 species with more 
than 3,500 species established in North America alone 
(Yamanaka et al., 2015). Actual numbers are likely much 
higher since many established species remain undiscovered 
or unreported. Global hotspots of insect biological invasions 
appear to be related to historical patterns of urbanization 
and industrialization (Branco et al., 2019; Huang et al., 2011) 
and the transport of species between Europe, East Asia, 
and North America reflecting trade and travel patterns (Kenis 
et al., 2007; Mattson et al., 2007). As global connectivity 
increases, regions such as Africa and South America are 
likely to be increasingly important as both recipients and 
donors of invasive alien insects. 

Many invasive alien insects are highly problematic around 
the world, with coleopterans, lepidopterans, dipterans, 
and hymenopterans being among the most notorious (e.g., 
Kenis et al., 2009). For example, alien ant species are often 
considered among the worst invasive alien species (Holway 
et al., 2002; Pyšek et al., 2008). Three ants are among 
the 10 most widespread invasive insects (Table 2 .10) 
and five are among the “100 of the world’s worst invasive 
alien species”, the only family to have so many species 
listed. Ants are easily transported by humans because 
of their generalist nesting habits and their small size 

Figure 2  12  Status, trends, and data gaps for established alien insects .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization purposes and do 
not indicate species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of 
established alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about 
data sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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(Wetterer et al., 2009). When intercepted at ports of entry, 
alien ant species are frequently detected on commercial 
ornamental plants (Lester, 2005; Suarez et al., 2005; 
Ward et al., 2006). Globally, more than 200 species have 
established populations outside their native distributions 
(Wetterer et al., 2009), but over 600 species have likely 
been introduced outside their native ranges (Miravete et al., 
2014). This makes ants the most represented insect family 
and particularly notorious ant species include Linepithema 
humile (Argentine ant), Anoplolepis gracilipes (yellow crazy 
ant), Wasmannia auropunctata (little fire ant), Solenopsis 
invicta (red imported fire ant), and Pheidole megacephala 
(big-headed ant). In addition, a recent study predicted that 
13 other species with similar ecological traits could also 
become invasive should they be introduced outside their 
native ranges (Fournier et al., 2019). To date, few studies 
are available on the biology and ecology of these invasive 
alien ants, except for Linepithema humile and Solenopsis 
invicta (Bertelsmeier et al., 2016; Pyšek et al., 2008). These 
two ant species from South America have invaded many 
countries by separate multiple introductions from their 
native ranges and subsequent secondary spread from 
invaded ranges (Ascunce et al., 2011; Giraud et al., 2002). 
Secondary introduction seems to be common for ants: 76 
per cent of interception events of alien ants at the border of 
the United States and 88 per cent of those intercepted at 
the New Zealand border did not come from their country of 
origin but from previously invaded countries (Bertelsmeier et 
al., 2018). 

Many alien insects are invasive in most parts of the world 
making it difficult to define the most important while 
remaining concise, but the 10 most widespread species 
provide good examples (Table 2 .10). Ceratitis capitata 
(Mediterranean fruit fly) and Bemisia tabaci (tobacco 
whitefly) affect agriculture in numerous countries, while 

insect-borne diseases are spread by the invasions of 
several mosquito species, such as Aedes albopictus (Asian 
tiger mosquito), Aedes aegypti (yellow fever mosquito), and 
Anopheles quadrimaculatus (common malaria mosquito). 
Harmonia axyridis (harlequin ladybird) was introduced to 
North America and Europe to control aphids, subsequently 
leading to the decline of native ladybirds through predation 
(Roy et al., 2012). Icerya purchasi (cottony cushion scale) 
is found in most regions, where it feeds on more than 
80 families of woody plants, particularly citrus crops. 
Brontispa longissima (coconut hispine beetle) feeds on 
young leaves of coconut palms throughout the Pacific 
region. Bemisia tabaci thrives in tropical and subtropical 
(and to a lesser degree temperate) regions, where it feeds 
on many plants but also facilitates the spread of plant 
viruses. Although not among the 10 most widespread, 
some other insects are among the best known of all 
invasive alien species. For example, North American forests 
have been deeply damaged by the invasions of Agrilus 
planipennis (emerald ash borer; Herms & McCullough, 
2014; Poland & McCullough, 2006; Valenta et al., 2017), 
Anoplophora glabripennis (Asian longhorned beetle; Dodds 
& Orwig, 2011; Kappel et al., 2017; Nowak et al., 2001), 
and Lymantria dispar (gypsy moth; C. B. Davidson et al., 
1999; Tobin et al., 2012). Drosophila suzukii (spotted wing 
drosophila), a vinegar fly of Asian origin, has emerged as 
a devastating pest of small and stone fruits throughout 
North America, Europe and South America (L. A. dos 
Santos et al., 2017). Coptotermes formosanus (Formosan 
subterranean termite) affects infrastructure and Trogoderma 
granarium (khapra beetle) destroys grain and seed reserves 
throughout the world. It is noteworthy that bees (Apis 
(honey bee), Bombus (bumble bee) or Megachile (leaf-
cutter bees), among others; e.g., Bartomeus et al., 2013; 
Goulson, 2003; Morales et al., 2017) and wasps (Vespa, 
Vespula, gall and parasitoid wasps, among others; e.g., 

Table 2  10   Top 10 most widespread invasive alien insect species worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table refers only to the distribution of invasive alien species, not their impacts which are covered in Chapter 4 (see section 2 .1 .4 for 
further details about data sources and data processing). “No. of regions” denotes the number of regions with confirmed occurrences 
of that species according to the chapter database. A data management report for the data underlying this figure is available at https://
doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Icerya purchasi (cottony cushion scale) 29 Harmonia axyridis (harlequin ladybird) 14

Tapinoma melanocephalum (ghost ant) 28 Ceratitis capitata (Mediterranean fruit fly) 14

Pheidole megacephala (big-headed ant) 24 Brontispa longissima (coconut hispine beetle) 13

Aedes albopictus (Asian tiger mosquito) 24 Bemisia tabaci (tobacco whitefly) 13

Solenopsis geminata (tropical fire ant) 19 Cameraria ohridella (horsechestnut leafminer) 13
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Beggs et al., 2011; Lester & Beggs, 2019) excepting Apis 
mellifera scutellata (Africanized bee), hybrid of several 
European honey bee subspecies and the East African 
honey bee, are the source of considerable revenue and 
rarely viewed as invasive despite outcompeting native 
pollinators (IPBES, 2016; Moritz et al., 2005). 

2.3.1.7 Arachnids

Trends

The number of recorded alien spiders has been increasing 
continuously (Figure 2 .13; Nentwig, 2015; Seebens, 
Blackburn, et al., 2017). An accelerated increase is 
observed after 1950 similar to those in many other 
invertebrate groups and likely as a consequence of 
increasing global trade and transport. In addition to the total 
number of alien spiders, the rate of annual new records has 
increased until the present reaching about 30 new records 
per five years (i.e., 6 new records annually; Figure 2 .13).

Status

Worldwide, 285 alien spider species (0.57 per cent of all 
described spider species) have been recorded outside of 

their native range. Most alien spiders are known from only 
a few records, from a few regions, but some species are 
so widespread that they are alien to several continents 
(Table 2 .11). The 28 most widespread species (10 per 
cent of all alien spiders) are known from more than 30 
invaded regions (often from all or most continents) and 
represent 50 per cent of all records. Major trade routes, 
at least past routes, connect areas of origin to invaded 
regions: 29 per cent of all globally spread spider species 
are native to Europe (while Europe is home to only 10 
per cent of all spider species), 25 per cent from the 
Americas, 20 per cent from Asia, 17 per cent from Africa, 
10 per cent from Australasia and the Pacific. Most spiders 
alien to Europe were unintentionally introduced either as 
stowaways, in or on transport vectors (i.e., the physical 
means or agent that transports a species; Glossary), 
or as contaminants (Nentwig, 2015). Horticulture is a 
major source of introduced spiders, followed by fruit and 
vegetable shipments, containers, and packaging materials. 
Imported classic cars and used sport cars often contained 
Latrodectus mactans (black widow spider) and cocoons 
in high numbers (Van Keer, 2010). For many areas in the 
world, no reliable species inventories are available. The top 
10 most widespread invasive alien arachnids as recorded 
by GRIIS are shown in Table 2 .12.

Figure 2  13  Status, trends, and data gaps for established alien arachnids .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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Table 2  11   The most common established alien spider families and species .

Based on 12 arachnid families with the most widely distributed established alien species, this family-wise presentation is of those 
species known to occur in more than 30 regions outside their native ranges. Families are ordered alphabetically, species according to 
frequency in the invaded area. Data from the World Spider Catalog (2017).

Family
No . of established 

alien species
Most widespread species Alien range

Agelenidae (funnel web spiders) 8 Tegenaria domestica
Eratigena agrestis

Europe
Europe

Araneidae (orb weavers) 23 Neoscona nautica
Argiope trifasciata

Pacific
North America

Cheiracanthiidae (yellow sac spiders) 3 Cheiracanthium mildei Europe

Dysderidae (woodlouse hunters) 2 Dysdera crocata Pacific
Europe
North America

Oonopidae (goblin spiders) 19 Triaeris stenaspis
Brignolia parumpunctata
Ischnothyreus peltifer
Opopaea concolor

Africa
Tropical Asia
Tropical Asia
Africa

Pholcidae (daddy-long-legs) 15 Pholcus phalangioides
Micropholcus fauroti
Artema atlanta 
Smeringopus pallidus
Spermophora senoculata

Temperate Asia
Temperate Asia
Africa
Africa
Temperate Asia

Salticidae (jumping spiders) 34 Plexippus paykulli
Hasarius adansoni
Menemerus bivittatus

Africa
Africa
Africa

Scytodidae (spitting spiders) 8 Scytodes thoracica Europe

Oecobiidae (disk web spiders) 9 Oecobius navus Africa

Sicariidae (six-eyed spiders) 1 Loxosceles rufescens North America
Europe
Australia
Asia

Sparassidae (giant crab spiders) 3 Heteropoda venatoria Tropical Asia

Theridiidae (cobweb or combfooted 
spiders)

47 Parasteatoda tepidariorum
Steatoda grossa
Steatoda triangulosa
Latrodectus geometricus

South America
Europe
Europe
Africa

Table 2  12   Top 10 most widespread invasive alien arachnids worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note 
this table only refers to the distribution of invasive alien species rather than their impacts which is covered in Chapter 4 (see section 
2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with confirmed 
occurrences of that species according to the chapter database. A data management report for the data underlying this figure is 
available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Raoiella indica (red palm mite) 7 Steatoda nobilis (false widow spider) 2

Opilio canestrinii (harvestman) 3 Tetranychus urticae (two-spotted spider mite) 2

Varroa destructor (Varroa mite) 3 Aceria litchii (litchi gall mite) 1

Latrodectus geometricus (brown widow spider) 2 Aceria tristriata (walnut leaf gall mite) 1

Mermessus trilobatus (trilobate dwarf weaver) 2 Aculops lycopersici (tomato russet mite) 1
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2.3.1.8 Molluscs

Trends 

Overall, molluscs have mostly been introduced 
unintentionally with numbers of introductions starting to 
increase at the end of 1800s (Figure 2 .14). Similar to 
crustaceans, marine species introductions started when 
transoceanic voyages began around 1500 but were rarely 
documented (Carlton, 1999b). During the second half of 
the twentieth century, increases in shipping, aquaculture, 
and the aquarium trade facilitated the introductions of 
both marine and freshwater molluscs (Carlton, 1999a; 
Cianfanelli et al., 2016; Cowie, 2005; Darrigran et al., 
2020; De Silva, 2012; X. Guo, 2009; Katsanevakis et al., 
2013; Ojaveer et al., 2018; R. Sousa et al., 2014). A similar 
pattern is observed for terrestrial molluscs; they are almost 
exclusively moved as contaminants through agriculture 
and horticulture and their introductions began in ancient 
times (Herbert, 2010). Since 1600, European colonists 
have introduced many species to new areas (Herbert, 
2010). With the increasing trade, introductions rates grew 
from the 1950s onward (Cowie, 2005; Herbert, 2010; 
Hutchinson et al., 2014).

Status

Established alien molluscs have been reported from all over 
the world (Capinha et al., 2015; R. Sousa et al., 2009). 
However, despite their status as widespread alien species 
and extensive work by malacologists in terrestrial and 
marine ecosystems (Figure 2 .14) their distribution and 
spread has received comparatively little attention except 
for species such as Dreissena spp. (zebra and quagga 
mussels), Corbicula fluminea (Asian clam), and Magallana 
gigas (Pacific oyster) (Dölle & Kurzmann, 2020; Orlova 
et al., 2005; Ruesink et al., 2005; A. Sousa et al., 2009; 
Strayer et al., 2019). For bivalves, R. Sousa et al. (2009) 
listed examples of 35 established alien species in marine 
and freshwater systems of all continents, 24 of which have 
sufficient information about distribution or effects reported. 
However, the number of established alien bivalves is likely 
much higher than reported. Recently, Mytilus cf. platensis 
(mussel) was discovered in Antarctic waters (Cárdenas 
et al., 2020), further demonstrating that molluscs are 
transported in intercontinental transfers. Invasive bivalves 
often occur at very high densities becoming a major 
proportion of the benthic fauna (e.g., Arcuatula senhousia 
(Asian date mussel; Crooks & Khim, 1999), Mytilus 
galloprovincialis (Mediterranean mussel; Branch & Steffani, 

Figure 2  14  Status, trends, and data gaps for established alien molluscs .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by 
colour. The amount of available data is estimated by the proportion of available first records among all records available for that 
region (section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not 
indicate species numbers. The trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of 
established alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about 
data sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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2004), Limnoperna fortunei (golden mussel; Boltovskoy 
et al., 2006), Perna viridis (Asian green mussel; Rajagopal 
et al., 2006), and Ensis leei (American jack-knife clam; 
Raybaud et al., 2015)). 

Marine bivalves (oysters, mussels, clams) have long been 
widely introduced for cultivation and harvesting in many 
regions of the world. Some were introduced to replace 
depleted or diseased stocks of commercially valuable 
indigenous species, for example, Magallana gigas (Pacific 
oyster) and Ruditapes philippinarum (Japanese carpet 
shell) in Europe to diversify local marine farming, and 
Mytilus edulis (common blue mussel) in Canada and 
China (Tang et al., 2002). These alien species cause 
negative impacts in their introduced habitats by forming 
reefs on hard and soft bottoms and effecting large 
structural changes in littoral communities (Chapter 4, 
section 4 .3 .2 .3).

Though of small size, some invasive alien molluscs attain 
high densities and cause remarkable impacts. Littorina 
littorea (common periwinkle) occurs at densities of up to 
600 individuals per m² (Carlson et al., 2006), reduces algal 
canopies, and controls rocky intertidal community structure 
and species diversity (Bertness, 1984; Lubchenco, 1978; 
Petraitis, 1987; Yamada & Mansour, 1987). Crepidula 
fornicata (American slipper limpet) was introduced from 
the North American Atlantic coast to the Pacific coast 
and to Europe with Crassostrea virginica (eastern oyster). 
It forms dense conglomerations of live specimens, shells 
and pseudofaeces, transforming the physical and chemical 
composition of the sediment, which adversely affects 
the endobenthic community and reduces the area of 
flatfish habitat. When it fouls Mytilus edulis (common blue 

mussel), Crepidula fornicata increases mussel mortality 
by four to eight times, but also reduces mussel predation 
by Asterias rubens (common starfish; Blanchard, 2009; 
Kostecki et al., 2011; Thieltges, 2005a, 2005b). The 
easternmost Mediterranean is the region with the highest 
reported number of marine alien molluscs (over 160 species 
along 180 kms of Israeli and Palestine coast alone), most 
introduced through the Suez Canal (Galil et al., 2021b). 

Alien snails and slugs have become established in most 
parts of the world, including on many islands. For example, 
38 alien terrestrial snails and slugs are established in 
Hawaii (Cowie et al., 2008). Cowie et al. (2009) listed 46 
species spanning 18 families for priority quarantine from 
the United States. Lissachatina fulica (giant African land 
snail) is one of the largest land snails in the world, reaching 
up to 19 cm in length, and is recognized as one of the 
world’s most damaging invasive alien species because of 
its omnivorous nature and because it is a vector of at least 
two human diseases (W. M. Meyer et al., 2008; Chapter 
4, section 4 .5 .1 .3). Euglandina rosea (rosy predator snail) 
was originally introduced to control Lissachatina fulica. Not 
only did it fail to control it, but Euglandina rosea caused the 
extinction of many endemic snails on the islands of Hawaii, 
Tahiti, Moorea, and other Pacific islands (Davis-Berg, 
2012; Chapter 4, section 4 .3 .1). Other widespread alien 
species include Pomacea canaliculata (golden apple snail; 
Q.-Q. Yang et al., 2018), Arion ater (european black slug; 
Zemanova et al., 2018), Cepaea nemoralis (grove snail), 
Cornu aspersum (common garden snail), Limax maximus 
(leopard slug), Cernuella virgata (vineyard snail), Theba 
pisana (white garden snail) and Arion vulgaris (Spanish slug). 
Table 2 .13 lists the 10 most widespread alien mollusc 
species invasive in most regions. 

Table 2  13   Top 10 most widespread invasive alien mollusc species worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note 
this table only refers to the distribution of invasive alien mollusc species rather than their impacts which are covered in Chapter 4 
(see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with 
confirmed occurrences of that species according to the chapter database. A data management report for the data underlying this 
figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Lissachatina fulica (giant African land snail) 31 Pomacea canaliculata (golden apple snail) 13

Corbicula fluminea (Asian clam) 22 Arcuatula senhousia (Asian date mussel) 10

Dreissena polymorpha (zebra mussel) 20 Melanoides tuberculata (red-rimmed melania) 10

Magallana gigas (Pacific oyster) 15 Corbicula fluminalis (Asian clam) 9

Potamopyrgus antipodarum (New Zealand 
mudsnail)

15 Dreissena rostriformis bugensis (quagga 
mussel)

9

https://doi.org/10.5281/zenodo.7615582


CHAPTER 2. TRENDS AND STATUS OF ALIEN AND INVASIVE ALIEN SPECIES

107

2.3.1.9 Crustaceans

Trends 

Unintentional introductions of marine crustaceans probably 
began in the 1500s when transoceanic voyages were first 
undertaken (Carlton, 2011), but no data are available. The 
first records of alien crustaceans were reported between 
the 1800s and the beginning of 1900s (Carlton, 2011; 
Figure 2 .15). Like those of other alien marine species, 
crustacean introductions have risen in recent decades due 
to increased shipping, fisheries, aquaculture, and aquarium 
trade (Fernández de Alaiza García Madrigal et al., 2018; 
Hänfling et al., 2011; Katsanevakis et al., 2013; Ojaveer et 
al., 2018). For example, the Suez Canal allowed the entry of 
alien crustaceans into the Mediterranean Sea for the entire 
twentieth century with an increase from 1990 facilitated by 
climate warming (Galil, 2011). The unintentional introduction 
of freshwater species started with global shipping and the 
construction of artificial canals (e.g., in Central and Western 
Europe), increasing after the 1950s. Overall, crustaceans 
were one of the most frequently introduced groups in 
recent decades in the Baltic Sea, California Bay, and the 
Laurentian Great Lakes (Hänfling et al., 2011). On the other 
hand, crayfish have been intentionally introduced as a food 
source since the end of 1800s (Hänfling et al., 2011), but 
global increases of crayfish production starting in the 1970s 

boosted introductions (Haubrock et al., 2021; Lodge et 
al., 2012).

Status

Crustaceans are frequently found among lists of marine 
and freshwater alien species (Galil et al., 2011; Hänfling 
et al., 2011; Simões et al., 2021). As an example, the 
Mediterranean, North East Atlantic, Black and Baltic Seas 
host some of the highest species numbers, with 1,411 
established alien species reported (Tsiamis et al., 2018), 
a noteworthy proportion of which includes crustaceans 
(Tsiamis et al., 2020). Owing to human activities, many 
marine crustacean species have achieved global 
distributions (e.g., barnacles Balanus glandula (Kerckhof 
et al., 2018), Amphibalanus improvisus (bay barnacle), and 
Amphibalanus eburneus (ivory barnacle); isopods Synidotea 
laevidorsalis (J. W. Chapman & Carlton, 1991) and Ianiropsis 
serricaudis; amphipod Caprella mutica (Japanese skeleton 
shrimp); shrimp Palaemon macrodactylus (oriental shrimp); 
additional shrimp and many crab species; many copepods 
and mysids; and several more).

Hemigrapsus sanguineus (Asian shore crab) is now the 
dominant crab in rocky intertidal habitats along much 
of the north-eastern coast of the United States and the 

Figure 2  15  Status, trends, and data gaps for established alien crustaceans .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by 
colour. The amount of available data is estimated by the proportion of available first records among all records available for that 
region (section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not 
indicate species numbers. The trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of 
established alien species per five years). Smoothed trend line is calculated as running median (section 2 .1 .4 for further details about 
data sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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European Atlantic coast where it has been introduced and 
displaces resident crab species (Blakeslee et al., 2017; 
Epifanio, 2013). The literature on the Asian shore crab 
is limited in comparison to that of better-known global 
marine invasive established crabs like Carcinus maenas 
(European shore crab), Carcinus aestuarii (Mediterranean 
green crab) (Cosham et al., 2016; Leignel et al., 2014), and 
Eriocheir sinensis (Chinese mitten crab; Dittel & Epifanio, 
2009). Table 2 .14 lists the 10 most widespread invasive 
alien crustacean species and the number of regions each 
has invaded.

Crustaceans also comprise major proportions of alien 
animals established in large freshwater ecosystems; 
their rate of discovery, along with that of other freshwater 
invertebrates, is increasing in these habitats (Ricciardi, 
2015). According to Gherardi (2010), 28 crayfish species 
have been introduced into a new biogeographic region and/
or translocated within their native biogeographic region. 
In Europe, most crayfish species are alien (at least 10 
alien, five native), with significantly higher abundances and 
severe impacts caused by alien crayfish, especially the 
transmission of crayfish plague, a disease lethal to native 
species (Kouba et al., 2014; Chapter 4, section 4 .3 .2 .2). 
There is increasing recognition of their severe impacts, 
notably the displacement of native species (Gherardi, 
Aquiloni, et al., 2011; South et al., 2020). In Africa, five 
out of nine introduced crayfish species established 
populations in at least six countries, causing substantial 
ecological and economic damage (Madzivanzira et al., 
2021). Genetic divergence between European and North 
American lineages of freshwater cladocerans suggests that 
the current rate of invasion by European species in North 
America is ca. 50,000 times higher than prehistoric levels 
(Hebert & Cristescu, 2002). Invasions of the Laurentian 

Great Lakes (Box 2 .11) by two cladocerans, Cercopagis 
pengoi (fishhook waterflea), and Bythotrephes longimanus 
(spiny waterflea), have caused concern for freshwater 
biodiversity and regional fisheries (Pichlová-Ptáčníková & 
Vanderploeg, 2009). Dikerogammarus villosus (killer shrimp) 
is a physiologically tolerant and adaptable amphipod 
of Ponto-Caspian origin that has colonized most of the 
major European inland waterways in only two decades, 
replacing many local amphipod species. Its continued range 
expansion, as well as its potential to reach freshwaters of 
other continents (particularly North America and its Great 
Lakes), is a major conservation concern (Rewicz et al., 
2014). Hemimysis anomala (bloody-red shrimp) was one of 
several Ponto-Caspian species to invade the Great Lakes in 
recent decades through transoceanic shipping (Audzijonyte 
et al., 2007).

2.3.1.10 Other invertebrates 

Other invertebrates cover those invertebrate species that 
are not addressed in previous sections and include the 
phyla Acanthocephala, Annelida, Brachiopoda, Bryozoa, 
Chaetognatha, Cnidaria, Ctenophora, Echinodermata, 
Kamptozoa, Nematoda, Nemertea, Onychophora, 
Phoronida, Platyhelminthes, Porifera, Rotifera, Sipuncula 
and Xenacoelomorpha.

Trends 

There is a paucity of data on molluscs, and crustaceans, 
but there is nothing to suggest that the trends for these 
animals differ from the better documented groups. In 
fact, data on the trends in both cumulative numbers 
and number of established alien species per five-year 
intervals show that animals other than the aforementioned 

Table 2  14   Top 10 most widespread invasive alien crustacean species worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note 
this table only refers to the distribution of invasive alien crustacean species rather than their impacts which are covered in Chapter 4 
(see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with 
confirmed occurrences of that species according to the chapter database. A data management report for the data underlying this 
figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Pacifastacus leniusculus (American signal 
crayfish)

19 Dikerogammarus villosus (killer shrimp) 12

Procambarus clarkii (red swamp crawfish) 19 Cherax quadricarinatus (redclaw crayfish) 11

Amphibalanus improvisus (bay barnacle) 17 Chelicorophium curvispinum (Caspian mud 
shrimp)

10

Faxonius limosus (spiny-cheek crayfish) 14 Cercopagis pengoi (fishhook waterflea) 8

Eriocheir sinensis (Chinese mitten crab) 12 Macrobrachium rosenbergii (giant freshwater 
prawn)

7

https://doi.org/10.5281/zenodo.7615582
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vertebrates and invertebrates follow the same dramatic 
global increases since ca. 1850 (Figure 2 .16). For example, 
jellyfish populations appear to be increasing post-1950 in 
coastal ecosystems worldwide, mostly due to increasing 
populations of invasive alien species (Brotz et al., 2012; 
importantly, note that Brotz et al. (2012) defined “jellyfish” 
as including three separate phyla of marine invertebrates 
– Cnidaria, Ctenophora, and Chordata). The increase 
has accelerated in recent decades and climate change 
is likely playing a role in facilitating increased survival and 
growth, and access to previously unfavourable waters. 
The depletion of predators and food competitors due to 
overfishing was also important (A. J. Richardson et al., 
2009). Notably, several comb jelly species (ctenophores) 
often survive ballast-water exchange, and their populations 
have been found to expand in over-fished areas that provide 
favorable conditions (Daskalov et al., 2007). The invasion 
of the Black, Caspian, Baltic, and North Seas by the comb 
jelly Mnemiopsis leidyi (sea walnut) in the recent decades 
is a good illustration (Boersma et al., 2007; Daskalov 
& Mamedov, 2007; Haslob et al., 2007; Zaitsev, 1992). 
The increase of invasive alien jellyfish and comb jellies 
is predicted to continue accelerating (A. J. Richardson 
et al., 2009). Other marine species, such as Anemonia 

alicemartinae (sea anemone), are considered invasive along 
the coast of Chile, and historical records show a rapid 
expansion towards the south, extending its distribution 
(Castilla et al., 2005; Castilla & Neill, 2009; Häussermann & 
Försterra, 2001).

Status 

Comprehensive studies for invertebrates, other than those 
reported above, are often lacking and detailed knowledge is 
usually available for only a few species. Asterias amurensis 
(northern Pacific seastar) is considered one of the most 
serious marine pests in Australia (MPSC, 2018). The same 
concern arises for Centrostephanus rodgersii (long-spined 
sea urchin). Its invasion from mainland Australia to Tasmania 
has already caused ecosystem shifts from kelp-dominated 
to a macroalgal-free habitat resulting in localized losses of 
about 150 taxa that associate with seaweed beds (Ling et 
al., 2009). Among ctenophores, a prominent representative 
is the previously mentioned Mnemiopsis leidyi (sea walnut), 
first introduced from the North American east coast to the 
Black Sea in ship ballast water. The species subsequently 
spread throughout the Ponto-Caspian basin and the 
Mediterranean Sea, ultimately spreading across most 

Figure 2  16  Status, trends and data gaps for other established alien invertebrates .

Other established alien invertebrates refer to animal groups, which are not covered in the previous sections. The names of the 
taxonomic groups are listed at the beginning of section 2 .3 .1 .10. The number of established alien species per region (upper left) 
and the amount of available data (upper right) are indicated by colour. The amount of available data is estimated by the proportion 
of available first records among all records available for that region (section 2 .1 .4 for further details). Grey regions denote areas 
with lacking data. Oceans are tinted for visualization and do not indicate species numbers. Trends are shown in lower panels for 
cumulative numbers and as a rate of increase (i.e., numbers of established alien species per five years). Smoothed trend (line) is 
calculated as running median (section 2 .1 .4 for further details about data sources and data processing). Note presented numbers 
may deviate from those reported in the text due to variation among data sources. A data management report for the data underlying 
this figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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European seas due to a climate-driven range expansion 
rather than a human-mediated introduction (Shiganova et 
al., 2019).

Many earthworm species can be regarded as “ecosystem 
engineers”, that is they play a pronounced role in the 
creation, modification and maintenance of the upper 
horizons of the soil habit (Eijsackers, 2011; C. G. Jones 
et al., 1994; Ponge, 2021). The potential for modifying 
the soil environment means that earthworms can have 
a disproportionate impact on the communities that 
they invade (Hendrix et al., 2008). This is especially true 
in circumstances where earthworms invade soils that 
previously had an absent or impoverished earthworm 
fauna (Frelich et al., 2019). Globally, more than 100 alien 
earthworm species are documented (Hendrix, 2006) 
but have mostly been neglected until very recently. For 
example, earthworm invasions in North America date 
back to the first European settlers, but because they 
live underground, they have remained mostly unnoticed 
(Migge-Kleian et al., 2006). Ongoing invasions of European 
earthworms into the Upper Midwest of the United States 
are relatively well documented (Hale et al., 2005) compared 
to the invasion in the Northeast (Stoscheck et al., 2012; 
Suárez et al., 2006). Alien earthworms can often be found 
spreading into habitats where few or no native earthworms 
exist, such as in North America which has been 
depauperate in native earthworms since the last glaciation 
(McCay & Scull, 2019). Similar patterns are believed to 
exist in the taiga region in Russia and the coniferous 
forests of Scandinavia (Hendrix, 2006). The earthworm 
fauna of the North American northeast now includes a few 
native species (Csuzdi et al., 2017), many alien species 
from Europe, and a rapidly rising number of species from 
Asia (Addison, 2009; McCay & Scull, 2019). The tropical 
earthworm Pontoscolex corethrurus, originally native 
to Guyana, was introduced to tropical and sub-tropical 
regions worldwide (S. Taheri et al., 2018). Platydemus 
manokwari (New Guinea flatworm) was both unintentionally 
and deliberately introduced into the soils of many countries 
and islands, where it leads gregarious attacks on large 
earthworms and land snails (Sugiura, 2010; Sugiura & 
Yamaura, 2009). Another flatworm, Obama nungara from 
South America, has been introduced to France (Justine 
et al., 2020). Arthurdendyus triangulatus (New Zealand 
flatworm) can now be found in Great Britain where it causes 
declines in native earthworm populations (Murchie & 
Gordon, 2013).

There is a growing recognition of the influence of alien 
earthworms in tropical environments as well (Marichal et 
al., 2012; Ortíz-Ceballos et al., 2019; Potapov et al., 2021; 
S. Taheri et al., 2018). Earthworm communities in tropical 
agricultural environments often consist of both native and 
invasive alien species; however, it is not always clear what 
role these species are playing, though, without doubt, 

deforestation, the spread of plantations, landscaping and 
an expansion of human activity may serve as drivers that 
facilitate further invasion (Potapov et al., 2021). 

Along the south-eastern Pacific coast, there are records 
for six introduced species of polychaete worms from the 
families Spionidae and Sabellidae (Fuentes et al., 2020; 
Moreno et al., 2006). The species Polydora rickettsi, 
Polydora hoplura and Terebrasabella heterouncinata were 
accidentally introduced. There is no information regarding 
the type of introduction for Boccardia tricuspa, Polydora 
bioccipitalis and Dipolydora giardi (Fuentes et al., 2020). 
All of them compete with the native species. These 
introductions also cause negative economic impacts in the 
aquaculture industry by boring and infesting the shells of 
cultured molluscs (Fuentes et al., 2020; Moreno et al., 2006; 
Chapter 4, Box 4 .13).

2.3.1.11 Data and knowledge gaps

Global analyses on invasion trends and status for animals 
are limited to some taxonomic groups, such as mammals, 
birds, reptiles, amphibians, fish, land snails, spiders, 
crustaceans and ants. Many case studies exist on species 
of other groups, but they provide substantially less 
information on general patterns.

Data and knowledge gaps are pervasive across all 
taxonomic groups and geographical levels (Figure 2 .6; 
Pyšek et al., 2008; Troudet et al., 2017). Charismatic 
species such as birds and mammals tend to be more 
studied while other taxa, such as herpetofauna and 
invertebrates, have weaker sampling efforts and hence 
more data gaps (Pyšek et al., 2008; Rocha-Ortega et 
al., 2021; Troudet et al., 2017). However, even the most 
intensively studied taxa may not be fully documented at the 
global scale resulting in geographic biases mainly driven 
by economic development (Dawson et al., 2017) and 
linguistic barriers (Angulo et al., 2021; Nuñez & Amano, 
2021). The data gaps comprising both taxonomic groups 
and geographical regions in the marine realm are particularly 
apparent. Unlike terrestrial and freshwater alien species, 
marine alien species are mostly unintentionally introduced, 
and most records are either confined to economically 
impactful species, or to (relatively) large-sized sessile taxa 
inhabiting the intertidal or the shallow shelf. Even for these 
taxa, surveys have not been conducted along region-
wide coastlines, leaving most alien taxa undetected and 
unrecognized. This presents an enormous challenge for 
understanding the dynamics of these biological invasions 
and prioritizing conservation and research aims for marine 
ecosystems (Ojaveer et al., 2015, 2018).

Comprehensive analyses of data and knowledge gaps of 
alien species occurrences are largely lacking on a global 
scale. The few global systematic reviews of alien species 
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distributions available for well-studied taxonomic groups 
such as mammals (Biancolini et al., 2021), birds (E. E. Dyer, 
Cassey, et al., 2017), reptiles and amphibians (Capinha et 
al., 2017) indicate large geographic areas of incomplete 
information. For example, global systematic reviews of 
studies of first record data for alien amphibians and reptiles 
(N. J. van Wilgen et al., 2018; Figures 2 .10 and 2 .11) 
using model-based estimates of the number of alien turtles 
expected to be introduced but not detected worldwide 
(García-Díaz et al., 2015), showed consistent spatial gaps. 
Alien reptiles and amphibians have been understudied in 
Africa and parts of Asia, whereas the knowledge of alien 
amphibians and reptiles in Meso- and South America varies 
by country. These spatial patterns broadly mirror those of 
native reptiles and amphibians assessed as data-deficient 
in global International Union for Conservation of Nature 
(IUCN) Red List of threatened species assessments (Böhm 
et al., 2013; Stuart et al., 2008) and are very similar for other 
taxonomic groups.

In some cases, even though large regions are indicated as 
invaded due to country-level reporting, it is likely that only 
certain areas of these countries are actually invaded. This 
coarse scale reporting may cause distorted understanding 
of global distribution maps of these species by assigning 
very large territories to invasions while in fact, only smaller 
areas might be concerned. When numbers of invasive alien 
species are compiled, large countries are more likely to be 
tallied as containing species, even if their distributions are 
not greater than in smaller countries, thus contributing to 
this bias. Also, species introduced to new parts of a country 
where they did not previously exist are often not reported as 
being alien, and therefore, total numbers of alien species are 
frequently underestimated. 

Data documenting invertebrate invasions are grossly 
incomplete. Earthworms are understudied compared to 
the impact they have on invaded ecosystems (Hendrix, 
2006; Porco et al., 2013). Many invertebrates are small 
and inconspicuous, and so large numbers of alien 
invertebrates remain undetected. For example, many 
Hymenoptera parasitoids have likely invaded regions 
without being detected likely due to a lack of available 
expertise and monitoring. The Asian parasitic wasp 
species Gryon japonicum (samurai wasp) was being 
evaluated for introduction as a biological control agent of 
Halyomorpha halys (brown marmorated stink bug) in North 
America when researchers discovered that it was already 
present (Talamas et al., 2015). Addressing this problem 
not only requires increased survey effort, but also requires 
increased taxonomic research, since many insect species 
remain undescribed.

Research efforts are also driven by the actual, perceived, 
or projected impacts of invasive alien species, with 
highest-impact species being the most studied (e.g., 

bivalves, a small number of ants, a few other insects, 
some crustaceans, most vertebrates), while those causing 
less conspicuous damage are sometimes neglected 
(Pyšek et al., 2008). For example, of the 19 highly 
invasive ant species, only two are extensively studied 
(over 350 studies each in Web of Science), three are 
much less covered, and the remaining species are almost 
entirely ignored (more than 3 per cent of all studies for 
the 14 other species cumulatively; Bertelsmeier et al., 
2016). Such disparities reflect presumed impacts and 
can potentially bias studies towards species with high 
expected impacts, but they also reflect the low number of 
biological invasion researchers and managers relative to 
the number of insect invasions. 

Other factors contributing to data and knowledge gaps 
include taxonomic uncertainties, inadequate historical 
records, lack of data mobilization (i.e., making data available 
and accessible), sharing, and insufficiently applied expertise. 
Many ecosystems – especially freshwater and marine 
systems – harbour species that cannot be categorized 
as either alien or native with any high degree of certainty. 
In other cases, alien species are wrongly and erroneously 
assumed to be native and to have a natural cosmopolitan 
distribution (Carlton, 2009; Jarić et al., 2019). The problem 
is most severe for small-bodied invertebrates (Marchini 
& Cardeccia, 2017; Ruiz & Carlton, 2003). Freshwater 
examples include bryozoans and rotifers, which are 
ubiquitous in lakes and rivers and have resting stages that 
are common and abundant in the ballast water of some 
transoceanic ships (Kipp et al., 2010), but are rarely reported 
as alien species even in highly invaded aquatic systems 
(Pociecha et al., 2016; Ricciardi, 2015).

In addition to information on the occurrence of alien 
populations, the dates of first introduction are unknown 
for most taxa except for avian and mammalian species 
(Biancolini et al., 2021; E. E. Dyer, Redding, et al., 
2017). In general, more of this temporal information 
exists for Europe, especially for mammals and birds, 
while large gaps are found in Central Africa and South 
Asia. However, in most cases, the proportion of species 
with available temporal information is far below 50 per 
cent (Seebens et al., 2020), often including well-studied 
regions like North America and Europe. Furthermore, 
there is a severe gap in temporal information for 
invertebrates all over the world. 

More work to address the current knowledge gaps remains 
to be done. In particular, further genetic research including 
environmental deoxyribonucleic acid (DNA; Herder et al., 
2014; Hunter et al., 2015; Tingley et al., 2019) will contribute 
to resolving the alien or native status of some species 
and to uncovering cryptic and unrecognized introductions 
(Cogălniceanu et al., 2014; Silva-Rocha et al., 2012; Telford 
et al., 2019).
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2.3.2 Plants

This section reports on the temporal trends and status of 
the distribution of alien and invasive alien plant species 
for vascular plants (section 2 .3 .2 .1), aquatic plants 
(section 2 .3 .2 .2), algae (section 2 .3 .2 .3) and bryophytes 
(section 2 .3 .2 .4) as well as data and knowledge gaps 
(section 2 .3 .2 .5).

2.3.2.1 Vascular plants

Trends 

The total number of alien plant species established 
outside of their native ranges worldwide has increased 
continuously for centuries (Figure 2 .17), and first records 
of alien plants dating back more than one thousand years 
exist from all over the world (van Kleunen et al., 2019; 
Wijesundara, 2010). As with many other taxonomic groups, 
the rate of accumulation for plants rose dramatically in the 
second half of the nineteenth century, tapering off in the 
early twentieth century, but increasing steeply after ca. 
1970. Indeed, 28 per cent of all established plant records 
worldwide were recorded for the first time after 1970 
(Figure 2 .17).

The number of alien plant species introduced is particularly 
important because plant introductions (whether intentional 
or unintentional) are a pathway for other invasive alien 
species introductions such as forest pests and pathogens, 
microbes, and other hitchhikers (Hulme et al., 2008). The 
historical flow of alien plant species among continents 
shows that Europe and temperate Asia are the major 
donors of established alien plant species to other parts of 
the world (Drake et al., 1989; van Kleunen et al., 2015). 
The number of species native to Europe that have been 
established elsewhere is almost three times higher than 
expected (van Kleunen et al., 2015). North America is also 
over-represented, with 57 per cent more species donated 
than expected based on native continental richness. In 
contrast, the continents in the Southern Hemisphere are 
all under-represented as donors of alien species. This 
suggests that, at least for plants, the “Old World versus 
New World” dichotomy (a classical concept in biological 
invasions suggesting that “Old World” biota were more 
likely to invade other parts of the globe due to traits 
they developed in close association with humans in their 
native ranges; Di Castri, 1989) needs to be replaced by 
a Northern Hemisphere versus Southern Hemisphere 
dichotomy for the donor continents of established alien 
plants (van Kleunen et al., 2015). 

Figure 2  17  Status, trends, and data gaps for established alien vascular plants .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of alien species 
per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data sources and data 
processing). Note presented numbers may deviate from those reported in the text due to variation among data sources. A data 
management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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While North America has accumulated the greatest number 
of established alien species, the Pacific islands show 
the fastest increase in species numbers with respect to 
land area suggesting that Pacific islands have the highest 
vulnerability to invasions of all areas globally. Oceanic 
islands harbour more established alien plant species than 
similarly sized mainland regions, a phenomenon traditionally 
attributed to the niche space being unsaturated by native 
species or to a greater frequency of introductions (Moser 
et al., 2018; van Kleunen et al., 2015). Given the high 
concentration of endemic species on most oceanic islands, 
the large numbers of established alien species constitute a 
serious threat to global biodiversity (Fernández-Llamazares 
et al., 2021; Pyšek, Blackburn, et al., 2017; van Kleunen et 
al., 2015).

Status

Currently, the total number of established alien plant species 
(13,939 species; van Kleunen et al., 2019) indicates that at 
least 4 per cent of all known vascular plant species (337,137 
species; The Plant List, 2015) have become established 
outside their natural ranges because of human activity. In 
total, 12,345 established alien species are reported from 
mainland regions globally and 8,019 from islands (Pyšek, 
Pergl, et al., 2017).

The cool temperate forest and woodland regions have the 
highest richness of established alien plant species (6,586 
species), followed by tropical (equatorial 4,690 species, 
and savanna 4,843 species), and warm temperate regions 
(4,649 species). In total, temperate regions harbour 9,036 
established alien species relative to 6,774 for tropical 
zones, 3,280 in the Mediterranean regions, 3,057 in 
subtropical regions, and 321 in Arctic regions. When the 
total number of established alien species is standardized to 
the area of each region by comparing species accumulation 
rates with area, it appears that colder temperate and 
Mediterranean regions are more heavily colonized by alien 
species while more arid regions have fewer (Figure 2 .17; 
Pyšek, Pergl, et al., 2017).

Hotspots of relative alien species richness (i.e., the per cent 
of established alien species in the total regional flora) appear 
on both the western and eastern coasts of North America, 
north-western Europe, South Africa, south-eastern Australia, 
New Zealand, and India. South Africa, India, California 
(United States), Cuba, Florida (United States), Queensland 
(Australia) and Japan have the highest absolute values of 
established alien species (Essl et al., 2019; Pyšek, Pergl, et 
al., 2017). The mainland regions with the highest numbers 
of established alien species include several Australian states 
(New South Wales is highest in established alien richness 
on this continent) and several North American regions 
such as California, which has 1,753 established alien plant 
species. High levels of island colonization by established 

alien plants are concentrated in the Pacific region, but also 
occur on individual islands across all oceans. About one 
quarter (26 per cent) of the islands investigated by Essl et 
al. (2019) now have more established alien species than 
native species. England, Japan, New Zealand, and the 
Hawaiian archipelago harbour most established alien plants 
among islands or island groups (Pyšek, Pergl, et al., 2017). 
Numbers of established alien species are closely correlated 
with those of native species and also with those of invasive 
alien species. There is also a faster increase in the numbers 
of established alien species with area on islands than in 
mainland regions, indicating a greater vulnerability of islands 
to alien species establishment (Essl et al., 2019; Pyšek, 
Pergl, et al., 2017). 

Among vascular plants, the introduction of alien ferns is 
certainly less investigated and only one global assessment 
for alien ferns exists (E. J. Jones et al., 2019). This study 
lists 157 alien ferns which are found in all climatic zones 
except the Arctic and Antarctic and on all continents. High 
numbers of alien ferns were reported for New Zealand, 
Hawaii, India and Europe.

In terms of plant families, rankings by absolute numbers 
of established alien species reveal that Asteraceae 
(1,343 species), Poaceae (1,267) and Fabaceae (1,189) 
contribute most to the global established alien flora. 
Comparing the number of established alien species in a 
family to its total global richness reveals that some of the 
large species-rich families are over-represented among 
established alien species (e.g., Poaceae, Fabaceae, 
Rosaceae, Amaranthaceae, Pinaceae), some under-
represented (e.g., Euphorbiaceae, Rubiaceae), whereas 
Asteraceae, which has the highest richness of established 
alien species, reaches an expected value based on 
its global species richness. A significant phylogenetic 
signal indicates that some plant families have a higher 
potential for species to establish (Pyšek, Pergl, et al., 
2017). Solanum (112 species), Euphorbia (108) and Carex 
(106) are the richest genera in terms of established alien 
species. Some families are disproportionately over-
represented by alien species on islands (i.e., Arecaceae, 
Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, 
Convolvulaceae, Rubiaceae, Malvaceae), but significantly 
fewer families are over-represented on mainlands (e.g., 
Brassicaceae, Caryophyllaceae, Boraginaceae). On 
islands, the genera Cotoneaster, Juncus, Eucalyptus, 
Salix, Hypericum, Geranium, and Persicaria are over-
represented, while on the mainland Atriplex, Opuntia 
(pricklypear), Oenothera, Artemisia, Vicia, Galium, and 
Rosa are relatively richer in established alien species 
(Pyšek, Pergl, et al., 2017). 

The 10 most widely distributed established alien plants 
globally occur in at least 35 per cent of the world’s 
regions. Other species such as Sonchus oleraceus 
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Box 2  2   Cacti, grasses and woody species: A global assessment of trends and status of 
alien and invasive alien species .

Cacti (Cactaceae, about 1,922 species), grasses (Poaceae, 
about 11,000 species) and woody species are among the most 
studied species from a plant invasion perspective.

Cacti, native to the Americas, were among the first plants 
brought back by European explorers from the Americas in 
the fifteenth century. Most cacti (about 1,600 species, 81 per 
cent of the family) have been introduced outside their native 
ranges via the horticultural trade, especially recently due to 
higher volumes of e-commerce (Glossary; Novoa et al., 2017), 
rapidly increasing the number of established alien cactus 
species (Figure 2 .18). However, only 3 per cent of species in 
Cactaceae (57 species) are currently considered as invasive 
alien species (Novoa et al., 2015), with Opuntia ficus-indica 

(prickly pear) being the most widespread (Figure 2 .19). 
Although countries such as France, India or the United States 
support many established alien cacti (Figure 2 .20), there are 
three main hotspots for invasive alien cacti globally: South 

Africa (35 species recorded), Australia (26 species) and Spain 
(24 species). Most invasive alien cacti are native to Argentina, 
Mexico, and North America, which are roughly bioclimatically 
similar to the invaded regions. Other large regions, such as 
China, North- and South-East Asia, and Central Africa that 
are not intensively invaded by cacti have suitable climates 
for invasive cacti and therefore are at risk of future invasions 
(Glossary; Novoa et al., 2015).

Grasses have been introduced outside their native ranges for 
horticulture, soil stabilization, as food and fodder, as biofuel, or 
as raw materials. Most remarkably, forage grasses have been 
a major focus of plant introduction programmes across large 
areas (Visser et al., 2016). Perhaps as a result of such large 
introduction events, the number of established alien grass 
species has been intermittently increasing since the nineteenth 
century (Figure 2 .18). Currently, 1,226 alien grass species are 
reported as established globally (Pyšek, Pergl, et al., 2017). 

(common sowthistle) occur in 48 per cent of the regions 
corresponding to 42 per cent of the globe. Additional 
widely distributed established alien species are Oxalis 
corniculata (creeping woodsorrel), Portulaca oleracea 
(purslane), Eleusine indica (goose grass), Chenopodium 
album (fat hen), Capsella bursa-pastoris (shepherd’s 
purse), Stellaria media (common chickweed), Bidens 
pilosa (blackjack), Datura stramonium (jimsonweed), and 
Echinochloa crus-galli (barnyard grass). However, the 
ranking for invasive alien species differs among global 
databases because the data differ depending on the 

source used. The GloNAF database highlights Lantana 
camara (lantana,120/349 regions for which data on 
invasive status are known), Calotropis procera (apple of 
sodom, 118), Pontederia crassipes (water hyacinth, 113), 
Sonchus oleraceus (108) and Leucaena leucocephala 
(leucaena, 103) as the most distributed invasive alien 
species (Pyšek, Pergl, et al., 2017), while GRIIS (Pagad et 
al., 2022) provides a different ranking (Table 2 .15).

Table 2  15   Top 10 most widespread invasive alien vascular plant species worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table only refers to the distribution of invasive alien vascular plant species rather than their impacts which are covered in Chapter 4 
(see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with 
confirmed occurrences of that species according to the chapter database. A data management report for the data underlying this 
figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Pontederia crassipes (water hyacinth) 74 Robinia pseudoacacia (black locust) 45

Lantana camara (lantana) 69 Chromolaena odorata (Siam weed) 43

Leucaena leucocephala (leucaena) 55 Pistia stratiotes (water lettuce) 41

Ricinus communis (castor bean) 47 Erigeron canadensis (Canadian fleabane) 38

Ailanthus altissima (tree-of-heaven) 46 Cyperus rotundus (purple nutsedge) 37
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Figure 2  18   Trends in numbers of established alien species for Poaceae and Cactaceae .

Cumulative numbers (left panels) and number of established alien species per five-year intervals (right panels). Numbers shown 
underestimate the true extent of alien species occurrences due to a lack of data. Smoothed trends (line) are calculated as 
running medians (section 2 .1 .4 for further details about data sources and data processing). A data management report for the 
data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

Regions with the highest numbers of established alien grasses 
are Indonesia, Hawaii, Madagascar, New Zealand, tropical 
Africa, tropical South America and the southern United States 
(Figure 2 .20). Among all grasses, tall-statured grasses (defined 
as grass species that maintain a self-supporting height taller 
than or equal to 2 meters; 929 species) are 2–4 times more 
likely to establish than shorter grasses (Canavan et al., 2019). 
This is due in part to their rapid growth rates and capacity to 
accumulate biomass. Tropical Africa (especially islands in the 
Western Indian Ocean) is the main hotspot of established alien 
tall statured grasses, with this group accounting for 30 to 70 per 
cent of all established alien grasses. The Caribbean is another 
such hotspot (Canavan et al., 2019). Overall, 80.6 per cent of all 
tall statured grasses are woody bamboos, of which Bambusa 

vulgaris (common bamboo) is the most widespread species 
(Figure 2 .20).

Many woody species (shrubs and trees) are among the most 
widespread and damaging invasive plants (D. M. Richardson 
& Rejmánek, 2011). While there is no precise data available on 
the number of established woody species, D.M. Richardson 
and Rejmánek (2013; 2011) compiled a global database of 
751 invasive alien woody species, comprised of 434 trees 
and 317 shrubs in 90 plant families and 286 genera. These 
alien species were introduced outside of their native ranges 
through many pathways including horticulture (62 per cent of 
invasive woody species: 196 trees and 187 shrubs), forestry 
(13 per cent), food (10 per cent), and agroforestry (7 per cent). 
Regions with the largest numbers of woody invasive alien 
species are North America (212), Pacific Islands (208), Australia 
(203), Southern Africa (178), Europe (134), and Indian Ocean 
Islands (126). Taxa within the genera Acacia and Pinus (Pine) 
comprise a large portion of the woody invasive alien species 
globally. In particular, Pinus (comprising 111 tree and shrub 
species, only one of which has its natural range confined to 

the Northern Hemisphere) have been widely introduced and 
planted in many areas well outside their native range and are 
among the most widely used forestry species worldwide (D. 
M. Richardson et al., 1994). At least 30 Pinus species are 
known to be established alien species and 21 invasive alien 
species (D. M. Richardson, 2006). Pinus contorta (lodgepole 
pine) is one of the most invasive plantation trees (Figure 2 .19). 
Native to northwest North America, it is established in Great 
Britain, Ireland, and Russia, and is an invasive alien species in 
Argentina, Australia, Chile, New Zealand, and Sweden (Langdon 
et al., 2010). Pinus invasions were first recorded in South Africa 
in 1855, in New Zealand in 1880 and in Australia in the 1950s 
(20-30 years after the first large plantations were established), 
and most research on Pinus invasions has been done in those 
countries (Simberloff et al., 2009). However, because of a recent 
increase in commercial Pinus plantations in South America 
(Argentina, Brazil, Chile, and Uruguay are the countries having 
the greatest area of planted Pinus), Pinus invasions are currently 
an emerging problem on the continent and are predicted to 
increase rapidly in the next few decades (D. M. Richardson et 

al., 2008). Acacias (about 1,350 species), especially Australian 
acacias (species within the genus Acacia that are native 
to Australia, about 1,012 species), have also been widely 
introduced outside their native ranges for centuries (D. M. 
Richardson et al., 2011). At least 386 Australian acacias have 
been introduced outside Australia, of which 71 are recorded 
as established alien species and 23 as invasive alien species. 
The extent of Australian acacia invasions is likely to increase 
in the future, given that climatic models have suggested that 
a third of the world’s terrestrial surface is climatically suitable. 
For example, Acacia dealbata (acacia bernier; Figure 2 .19) 
is currently recorded as an invasive alien species in seven 
countries (D. M. Richardson & Rejmánek, 2011). Since it has 
been introduced widely outside of Australia, further accounts of 
its invasion are likely.
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Figure 2  20   Numbers of established alien grasses and cacti worldwide .

Colours indicate established alien species of the families Poaceae and Cactaceae per region, including terrestrial, freshwater 
and marine species. For islands, numbers are shown as dots for visualization. White areas on land denote that information 
is lacking. Note that the legend scale varies among panels (section 2 .1 .4 for further details about data sources and 
data processing). A data management report for the data underlying this figure is available at https://doi.org/10.5281/
zenodo.7615582

Figure 2  19   Examples of the most widespread invasive cacti, grasses and woody species .

Opuntia ficus-indica (prickly pear; top left) is the most commercially important cactus and is recorded as invasive in 26 countries 
worldwide. Bambusa vulgaris (common bamboo; top right) is the most widely cultivated bamboo and recorded as invasive in 5 
countries. Pinus contorta (lodgepole pine; bottom left) is one of the most invasive plantation trees and it is recorded as invasive 
in 5 countries. Acacia dealbata (acacia bernier; bottom right) was introduced to many regions for multiple purposes and is now 
a widespread invasive alien species in 7 countries. Photo credit: Nicole Pankalla, Pixabay – under license CC BY 4.0 (top left) / 
Bishnu Sarangi, Pixabay – CC BY 4.0 (top right) / Walter Siegmund – CC BY 4.0 (bottom left) / Ulrike Leone, Pixabay – CC BY 
4.0 (bottom right).
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2.3.2.2 Aquatic plants

Trends
The first records of alien aquatic plants date back to the 
eighteenth century, becoming more numerous by the early 
1900s (Brundu, 2015b; Chomchalow, 2011; Gettys, 2019; 
M. P. Hill et al., 2020; Hussner et al., 2010). As modelled by 
Seebens, Bacher, et al. (2021), the rate of first records for 
alien aquatic plants increased post-1950, especially after 
1980 when the ornamental plant trade increased (Hrivnák 
et al., 2019; Hussner et al., 2010; Nunes et al., 2015), and 
again after 2008 when aquatic detection improved with 
the development of environmental DNA technology. Both 
the numbers and rates of established alien aquatic plants 
are projected to continue to increase until 2050 (Seebens, 
Bacher, et al., 2021).

Status

Of the 13,168 established alien plant species reported in 
the GloNAF database, less than 1 per cent are aquatic 
(Pyšek, Pergl, et al., 2017). However, comprehensive 
assessments of aquatic alien plants globally are lacking. 
Still, some aquatic plant species are prominent invasive 
alien species. Originally from the tropical zone of South 
America, Pontederia crassipes (water hyacinth), is one of 
the world’s most prevalent invasive alien aquatic plants. 
This free-floating vascular plant has invaded freshwater 
systems in 62 countries, from 40°N to 40°S (Pan et al., 
2011) and, according to recent climate change models, 
its distribution may expand into higher latitudes as 
temperatures rise. It is prevalent in tropical and subtropical 
waterbodies where nutrient concentrations are often high 
due to agricultural runoff, deforestation, and insufficient 
wastewater treatment. There are no records of Pontederia 
crassipes first introductions, but many populations are well 
established and persistent despite control efforts (Coetzee 
et al., 2017; Villamagna & Murphy, 2010). Sheppard et al. 
(2006) provide an evaluation of several aquatic invasive 
alien plant species distributions and status in Europe. For 
example, Azolla filiculoides (water fern), a small annual 
floating fern (hydrophyte), became established in slow 
moving and still water in ponds, canals, dikes and lakes, 
following escape from aquaria and botanical gardens in 
the mid-nineteenth century. The plant is now widespread 
in Central and Western Europe, South Africa, China 
and Australasia. Species from the Americas such as 
Ludwigia grandiflora (water primrose), Ludwigia peploides 
(water primrose), and aquatic perennial herbs (hydro-
hemicryptophytes) are classified as invasive alien species 
in Europe. Crassula helmsii (Australian swamp stonecrop), 
originally from Australia and New Zealand, arrived in the 
United Kingdom in the 1950s and is known as an invasive 
alien species in the United Kingdom and the Kingdom of 
the Netherlands. Elodea canadensis (Canadian pondweed) 
and Elodea nuttallii (Nuttall’s waterweed), both native to 

North America, are the most widespread alien aquatic 
plants in Europe. Introduced in the mid-1800s, Elodea 
canadensis spread along river systems throughout Europe 
in the latter half of the century and now occurs in many 
other countries worldwide. In the early twentieth century, 
Elodea canadensis was replaced by Elodea nuttallii in many 
regions. Elodea nuttallii may in turn begin to be replaced 
by another invasive alien hydrocharitacean species, 
Lagarosiphon major (African elodea), in the United Kingdom 
(Brundu, 2015a). Myriophyllum aquaticum (parrot’s 
feather), from tropical and subtropical South America, is 
the dominant invasive alien aquatic plant in Europe. First 
introduced into France (1880) and then Portugal (1935) 
as an aquarium escapee, Myriophyllum aquaticum is also 
present in the United Kingdom and the Kingdom of the 
Netherlands and is probably more widespread as it was 
sold as an “oxygenating plant” until 2016. It is also a major 
weed in the United States, Australasia, Southern Africa, 
and Asia. 

Among marine vascular plants, the seagrass Zostera 
japonica (dwarf eelgrass) was introduced to the Pacific 
Northwest in the mid-1900s likely via oyster aquaculture and 
has since spread and negatively impacted native Zostera 
marina (eelgrass) and ecosystem processes (Shafer et al., 
2014). Additionally, Halophila stipulacea (halophila seagrass) 
was introduced to the Mediterranean Sea through the Suez 
Canal where it is now widespread (Willette et al., 2014). 
More recently, Halophila stipulacea was introduced to the 
Caribbean Sea where it is spreading and is described as the 
world’s first globally invasive marine angiosperm (Willette et 
al., 2014; Winters et al., 2020). 

2.3.2.3 Algae

In this section, algae are comprised of taxa of the phyla 
Rhodophyta, Chlorophyta, Charophyta, Cryptophyta, 
Euglenozoa, Haptophyta, Foraminifera, Ciliophora, 
Ochrophyta, Myzozoa and Cercozoa. Other groups of 
microorganisms are covered in section 2 .3 .3.

Trends 

Globally, many alien green, brown, and red marine algae 
have been reported, with steep increases (Figure 2 .21) in 
reports of large macroalgae invaders since the mid-twentieth 
century (Carlton & Eldredge, 2009; Fuentes et al., 2020; 
Ribera & Boudouresque, 1995; J. E. Smith, 2011; Vaz-Pinto 
et al., 2014; Villaseñor-Parada et al., 2018; S. L. Williams 
& Smith, 2007). The high rate of increase since this time 
likely reflects increased global shipping after the invention 
of containerized transport in 1956. A study on the global 
distribution of 97 marine algae with known invasion histories 
revealed that hotspots of future occurrences are in East 
Asian and European waters, largely reflecting high shipping 
intensities of enclosed seas (Seebens et al., 2016).
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The unresolved tensions between using alien species for 
aquaculture and their potential ecological impacts are 
well-represented in the history of seaweed invasions. In the 
1970s, a suite of alien seaweeds was introduced to the 
Hawaiian Islands for mariculture, including Kappaphycus 
striatus (Indo-Pacific red algae) and Gracilaria salicornia (red 
alga), and the tropical Atlantic Hypnea musciformis (hypnea). 
In subsequent decades, these algae spread across the 
Hawaiian Islands. Kappaphycus (red alga) is reported to 
achieve over 50 per cent cover on some Hawaiian coral 
reefs. Efforts to remove alien seaweeds from Hawaiian reefs 
are ongoing. 

Status 

Examples of significant algal invasions with well-
documented ecological and economic impacts include a 
variety of alien species native to Asia, such as Sargassum 
muticum (wire weed), Codium fragile (dead man’s fingers), 
Grateloupia turuturu (devil’s tongue weed), Gracilaria 
vermiculophylla (black wart weed), and Asparagopsis 
armata (Harpoon weed) – all now found on many continental 
margins around the world. Less widely distributed but 
even more notorious is Caulerpa taxifolia (killer algae), 
toxic to certain herbivores. More broadly distributed alien 
macroalgae are not necessarily more likely to succeed in 
new regions than more narrowly distributed species (S. L. 

Williams & Smith, 2007). For example, the genus Capreolia 
(red algae), considered endemic to Australasia, has been 
found on the coast of central Chile, based on molecular 
and morphological analysis (Boo et al., 2014). Pyropia 
koreana (red algae) described previously from Korea, has 
been reported in the Mediterranean Sea (Vergés et al., 
2013) and New Zealand (Nelson et al., 2014) and was 
detected using molecular analysis. Finally, Chondracanthus 
chamissoi (yuyo), considered endemic to the south-central 
coast of Chile, has been reported, through molecular 
analysis, in France, Japan, and Korea, where it shows 
important morphological variations (M. Y. Yang et al., 2015; 
Table 2 .16).

The cultivation of algae has facilitated the transfer of native 
species within country borders but still outside its historical 
range of distribution. For example, the macroalga Gracilaria 
chilensis (red seaweed), native to the south-central coast 
of Chile, has been extensively cultivated more than 640 km 
from its northern limit of distribution (Guillemin et al., 2008; 
Santelices, 1989), resulting in established alien populations 
from the escape of vegetative propagules from aquaculture 
facilities (Castilla & Neill, 2009; Guillemin et al., 2008; 
Villaseñor-Parada & Neill, 2011). Moreover, alien mollusc 
aquaculture has been identified as an introduction vector 
for many invasive macroalgae (Ribera Siguan, 2003; S. L. 
Williams & Smith, 2007). Indirect evidence suggests that 

Figure 2  21  Status, trends, and data gaps for established alien algae .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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Table 2  16   Top 10 most widespread invasive alien algae species worldwide .

The number of regions where the species is recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this table 
only refers to the distribution of invasive alien algae species rather than their impacts which are covered in Chapter 4 (see section 
2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with confirmed 
occurrences of that species according to the chapter database. A data management report for the data underlying this figure is 
available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Undaria pinnatifida (Asian kelp) 9 Gracilaria vermiculophylla (black wart weed) 5

Sargassum muticum (wire weed) 8 Coscinodiscus wailesii (diatom) 5

Caulerpa taxifolia (killer algae) 7 Dasysiphonia japonica (siphoned Japan weed) 5

Caulerpa cylindracea (green algae) 6 Alexandrium tamarense (dinoflagellate) 4

Codium fragile (dead man’s fingers) 6 Alexandrium minutum (dinoflagellate) 4

several species of alien macroalgae have been introduced 
by aquaculture of Magallana gigas (Pacific oyster) in Europe 
(Krueger-Hadfield et al., 2017; Lang & Buschbaum, 2010; 
Mineur et al., 2007), North America (Mathieson et al., 2003) 
and South America (D. E. Bustamante & Ramírez, 2009; 
Croce & Parodi, 2014). Filamentous alien species such as 
Polysiphonia morrowii, or alien species with filamentous 
stages in their life cycle, such as the “Falkenbergia phase” 
of Asparagopsis armata (Harpoon weed) or the “Vaucheroid 
phase” of Codium fragile (dead man’s fingers), benefit from 
the rugosities in the shell of Magallana gigas where they can 
pass unobserved.

Alien macroalgae species themselves can serve as an 
introduction vector for other alien species that live as 
epiphytes in the thallus. For example, in many ecosystems 
where Codium fragile (dead man’s fingers) has been 
introduced, its most conspicuous epiphyte is the Asian 
macroalgae Melanothamnus harveyi (Harvey’s siphon weed; 
e.g., González & Santelices, 2004; E. Jones & Thornber, 
2010; Schmidt & Scheibling, 2006; Villaseñor-Parada 
& Neill, 2011). Apparently, Melanothamnus harveyi is a 
secondary introduction associated with Codium fragile. 
Native species may also play an important role in the 
spread of alien species. For example, Schottera nicaeensis 
(red algae) and Asparagopsis armata (Harpoon weed) are 
invasive alien species in the Pacific southeast coast, and 
they have been found as epiphytes in drifting thalluses of 
the buoyant macroalgae Durvillaea antarctica (cochayuyo), 
becoming a potential dispersal mechanism for these 
species (Macaya et al., 2016). For example, the release 
of reproductive fragments adrift has been identified as 
alternative dispersal strategies in Codium fragile (Villaseñor-
Parada et al., 2013) and Mastocarpus latissimus (Oróstica 
et al., 2012).

2.3.2.4 Bryophytes 

Trends 

Cumulative numbers of first records grew slowly until 1950 
and have since increased rapidly worldwide (Figure 2 .22), 
particularly in Oceania and Europe (Essl et al., 2013). 

Status

The most comprehensive assessment of alien bryophytes 
compiled data from 82 locations on five continents in 
both hemispheres (Essl et al., 2013). To date, 139 species 
of bryophytes are considered alien in at least one of the 
regions studied, of which 79 are established, 19 are casual 
and 41 are cryptogenic (of uncertain origin; Glossary) 
occurrences. Of these, 106 are mosses, 28 liverworts, 
and 5 hornworts. Only 18 species (i.e., 13 per cent) 
are recorded as alien from at least five regions, with the 
most widespread being Campylopus introflexus (heath 
star moss; the best documented invasion, introduced 
to the United Kingdom in 1941 and coastal Europe in 
1954 and currently extending to Russia in the east and 
the Mediterranean in the south), Kindbergia praelonga 
(common feather moss), Lunularia cruciata (crescent-cup 
liverwort), Orthodontium lineare (cape thread-moss), and 
Pseudoscleropodium purum (neat-feather moss). The 
two most important pathways for bryophyte introductions 
are unintentional imports as hitchhikers on ships and 
planes and as epiphytes on ornamental plants and other 
horticultural supplies with 34 and 27 species, respectively. 
Most alien bryophytes occur in human-made habitats, 
such as ruderal sites, roadsides, and lawns, while only 
a few natural ecosystems such as forests and rocky 
outcrops regularly harbour alien bryophytes (Essl et 
al., 2013).
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Among locations of the Northern Hemisphere, the highest 
numbers of alien bryophytes are recorded for the Hawaiian 
Islands, United States and United Kingdom (22 species), 
followed by British Columbia, Canada (13 species), Ireland 
(11 species), California, United States (10 species) and 
France (10 species). In the Southern Hemisphere, most 
alien bryophyte species are recorded on islands (South 
and North Islands of New Zealand, 27 species each; St. 
Helena, 22 species). Continental South America, Asia and 
Africa have much lower numbers of alien bryophytes, from 
three to six species (Essl et al., 2013). In general, islands 
are more invaded by alien (and cryptogenic) bryophytes 
than continental regions (Essl et al., 2013). For invasive alien 
bryophytes, GRIIS (Pagad et al., 2022) lists only two species 
that occur in more than one region, Campylopus introflexus 
(heath star moss) and Orthodontium lineare (cape thread-
moss), each occurring in two regions.

2.3.2.5 Data and knowledge gaps

The GloNAF database and associated analyses (Pyšek, Pergl, 
et al., 2017; van Kleunen et al., 2015, 2019) make it possible 
to quantify the proportion of a continental area for which data 
on established alien vascular plants are available (e.g., Box 
2 .2). GloNAF 1.1 covers more than 83 per cent of the world’s 
ice-free terrestrial surface in terms of regions (n = 843) for 
which alien floras are available, but there is great variation in 

the geographic coverage among the continents defined by 
the Biodiversity Information Standards (TDWG, 2021). There 
is nearly complete data coverage, in terms of the proportion 
of individual regions having data on their alien floras, for 
Australasia (99.5 per cent of regions at the country, state, 
district or island level have information on alien flora), Africa 
(98.6 per cent), North America (95.9 per cent), South America 
(95.8 per cent) and Antarctica (90.2 per cent). The continents 
with lower coverage are tropical Asia (68.5 per cent), and 
particularly temperate Asia (54.8 per cent), where data are 
missing primarily for parts of Russia. The lack of data on alien 
floras for some regions of the European part of Russia also 
results in rather low coverage for Europe as a whole (63.8 per 
cent of the continent area). Data on alien plants are available 
for about half of the total area of the Pacific islands (49.1 
per cent). However, good geographical coverage does not 
mean the information on the alien plants for a given region 
is complete; there can be data gaps even for well-studied 
regions (Pyšek et al., 2008), as well uncertainties about a 
species status. Notably, identification of alien species is 
challenging for taxa with a distribution over more than one 
continent, for which no global identification key is available, 
and especially when the origin of the alien plant is unknown, 
such as for Cyperaceae, Hydrocotyle or Myriophyllum. The 
quality and completeness of individual datasets also vary 
greatly, as does the assessment of the status of alien species, 
habitat affiliations, first records and pathways (Figure 2 .22). 

Figure 2  22  Status, trends, and data gaps for established alien bryophytes .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend line is calculated as running median (section 2 .1 .4 for further details about data sources 
and data processing). Note numbers presented may deviate from those reported in the text due to variation among data sources. A 
data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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Ideally, records of alien plants occurrences would be collected 
following broadly accepted standards that reflect the research 
infrastructure and resources (Latombe et al., 2017; Chapter 
6, section 6 .6 .2 .3).

Similarly, comprehensive databases such as the GloNAF 
database are not available for bryophytes or algae, severely 
limiting the potential for a thorough assessment of the 
trends and status for these groups. While alien bryophytes 
in Central and Western Europe and North America are 
well-documented, data on alien bryophytes on all other 
continents, and particularly in the tropics, are rarely available 
(Essl et al., 2013). The number of algal invasions worldwide 
is poorly known due to low research efforts. In addition, 
comparatively high taxonomic uncertainty makes it difficult 
to compare species identities among studies. Many 
hundreds of seaweed species bear the same name around 
the world but are regarded as naturally distributed. These 
species doubtless represent a mixture of species complexes 
peppered with many overlooked invasions. Furthermore, 
the original native ranges are often unknown, making it 
impossible to determine whether populations are native or 
alien in that region. As a consequence, many populations 
of algae and bryophytes species can only be classified 
as cryptogenic and a comprehensive assessment of the 
current status of their alien distributions remains elusive.

Finally, the aforementioned databases provide regional lists 
of alien taxa without information on their precise spatial 
distributions. In large countries it is especially common 
that a reported species occurs in only part of the country. 
Occurrence datasets like the GBIF hold such spatially 
explicit data but to date report only incomplete information 
on the biogeographic status of taxa, that is, whether a 
species is native or alien (C. Meyer et al., 2016). Additionally, 
like all global databases, GBIF records for plants are biased 
in terms of taxonomy, space, and time (A. C. Hughes et 
al., 2021; C. Meyer et al., 2016; Troudet et al., 2017). 
However, new methods are emerging that allow the use of 
probabilistic tools to estimate the biogeographic status of 
occurrence records (Arlé et al., 2021).

2.3.3 Fungi and microorganisms 

This section reports on the temporal trends and status of 
the distribution of alien and invasive alien species for fungi 
(section 2 .3 .3 .1) and the group of Chromista, bacteria and 
viruses (section 2 .3 .3 .2) as well as data and knowledge 
gaps (section 2 .3 .3 .3). In this chapter the group of 
microorganisms is split into “fungi” (section 2 .3 .3 .1) with 
the phyla Ascomycota, Chytridiomycota, Basidiomycota, 
Microsporidia, and Zygomycota, and “Chromista, bacteria 
and viruses” (section 2 .3 .3 .2) with the taxonomic groups 
Oomycota, Actinobacteria, Chlamydiae, Cyanobacteria, 
Firmicutes, Proteobacteria, and viruses. Other groups of 

microorganisms are covered in section 2 .3 .2 .3. Note that 
there can be a high degree of uncertainty about to the 
status of microorganisms as native or alien. 

2.3.3.1 Fungi 

Trends 

Fungi comprise an immensely diverse biological kingdom 
that forms complex interactions at multiple ecological levels. 
Fungal invasions are increasingly recognized as key drivers 
of wildlife mortality and population declines for amphibians, 
bats, bees, soft coral, and other organisms (Fisher et al., 
2012). Introduction of undesirable alien fungi such as 
those producing repellent smells or toxic compounds, is 
also problematic (Parent et al., 2000; A. Pringle & Vellinga, 
2006). Negative impacts of plant diseases caused by 
fungal invasions have resulted in widespread ecosystem 
disruptions that indirectly impact the function of forests, 
streams, and other natural environments (Anderson et al., 
2004; Scott et al., 2019; Chapter 4, section 4 .3 .1) such as 
Hymenoscyphus fraxineus (ash dieback; Table 2 .17) causing 
ash dieback in Europe. In addition, alien fungal pathogens 
have severe negative impacts on agricultural crops (Chapter 
4, section 4 .4 .1). Examples include Phytophthora ramorum 
(sudden oak death; Thakur et al., 2019), Phyllosticta citricarpa 
(citrus black spot; Guarnaccia et al., 2019), Phakopsora 
pachyrhizi (soybean rust; Dean et al., 2012) or Pyricularia 
oryzae (rice blast disease; Fones et al., 2020). 

With an increasingly connected world, the rate at which 
alien fungi are recorded is accelerating (Bebber et al., 2013; 
Desprez-Loustau, 2009; Fisher et al., 2012). First reports 
(Figure 2 .23) of alien fungi have increased consistently 
since the mid-1800s (Bebber et al., 2013; Fisher et al., 
2012; Monteiro et al., 2020; Santini et al., 2013), with 
approximately 25 per cent of all dated records reported 
since 2000 (Monteiro et al., 2020). New species discovery 
for fungi has risen from 1,000-1,500 per year in the mid-
2000s, to a peak of more than 2,500 species in 2016 and 
over 2,000 new species discovered in 2019 (Cheek et al., 
2020). Nonetheless, reports of new occurrences are almost 
certainly underestimated (Bebber et al., 2019). In addition, 
with rising temperatures and more frequent extreme weather 
events, fungi are not only able to invade novel geographical 
areas, but some potentially pathogenic species are also 
beginning to evolve levels of thermotolerance that could 
allow them to breach the thermal barriers that have long 
protected mammals from fungal infections, representing 
a further threat to human health and wellbeing (Nnadi & 
Carter, 2021).

Status

Fungi are widely dispersed by humans, often unintentionally 
or as stowaways, via transport through the trade of goods 
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such as plants, seed, wood, shipping containers and other 
materials (Desprez-Loustau, 2009). Fungi are also dispersed 
across long and short distances in the atmosphere by wind 
or water and weather disruptions can play a significant 
role in spreading fungi into new regions (Anderson et 
al., 2004; J. K. M. Brown & Hovmøller, 2002). Fungi are 

being recorded on all continents, including Antarctica 
(Figure 2 .23). 

The fungi comprise an immensely diverse biological 
kingdom that forms complex interactions at multiple 
ecological levels. Their inconspicuous nature and dispersal 

Figure 2  23  Status, trends, and data gaps for established alien fungi .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note that presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

Table 2  17   Top 10 most widespread invasive alien fungi worldwide .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table only refers to the distribution of invasive alien species rather than their impacts which are covered in Chapter 4 (see section 
2 .1 .4 for further details about data sources and data processing). “No. of regions” denotes the number of regions with confirmed 
occurrences of that species according to the chapter database. A data management report for the data underlying this figure is 
available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Ophiostoma novo-ulmi (Dutch elm disease) 10 Ophiostoma ulmi (Dutch elm disease) 4

Batrachochytrium dendrobatidis (chytrid 
fungus)

9 Erysiphe alphitoides (oak mildew) 3

Cryphonectria parasitica (blight of chestnut) 5 Melampsoridium hiratsukanum (alder rust) 3

Hymenoscyphus fraxineus (ash dieback) 5 Clathrus archeri (devil’s fingers) 2

Pyrrhoderma noxium 5 Cronartium ribicola (white pine blister rust) 2

https://doi.org/10.5281/zenodo.7615582
https://doi.org/10.5281/zenodo.7615582
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by small, often long-lived spores make the spread of fungi 
to new locations difficult to control and easy to overlook. 
Fungal size, particularly the size of the fungal spore-
bearing structures, greatly influences how invasive alien 
fungi are recognized and studied (Desprez-Loustau et al., 
2010). The “microfungi,” so called because their spore-
bearing structures are microscopic, are the most important 
fungi associated with plant diseases. In contrast, the 
“macrofungi”, which produce large and sometimes vividly 
coloured spore-bearing structures (e.g., mushrooms), are 
mostly saprophytes and ectomycorrhizal fungi. Although 
the distinction between macro and microfungi is artificial, 
fungal size alone does influence the assessment of invasion 
dynamics of invasive alien fungi. 

About 650 species of macrofungi have been recorded 
outside their native ranges (Monteiro et al., 2020). Most 
belong to the orders Agaricales (44 per cent) and Boletales 
(29 per cent); slightly more than half are ectomycorrhizal, 
and the remainder are saprotrophic (Monteiro et al., 2020). 
The most widely distributed alien macrofungi include 
Amanita muscaria (fly agaric), Amanita phalloides (death 
cap), Phellinus noxius (brown tea root disease), Suillus 
granulatus (weeping bolete mushroom), and Suillus luteus 
(ectomycorrhizal fungus of pine) (Monteiro et al., 2020). The 
highest known diversity of macrofungal alien species is in 
the Southern Hemisphere in countries such as Argentina, 
Brazil, Chile, New Zealand, and South Africa, and in several 
European countries, including France, Germany, and the 
United Kingdom (Monteiro et al., 2020; Vellinga et al., 2009). 

Invasive alien fungal symbionts have been co-introduced 
with their hosts, as in the case of the ectomycorrhizal 
fungus Amanita phalloides (death cap), a native of Europe 
introduced to Australia and North and South America, 
probably in soils as consequence of the plant trade 
(A. Pringle et al., 2009; Vellinga et al., 2009; A. Pringle 
& Vellinga, 2006). According to Vellinga et al. (2009), 
about 200 species of ectomycorrhizal fungi (including 
ascomycetes and basidiomycetes) have been introduced 
into novel habitats due to the transport of Eucalyptus and 
Pinus spp. (Pine).

Dung fungi that have accompanied their herbivore partners 
introduced to the Caribbean islands are a good example 
(M. J. Richardson, 2008). Commercial use of “biofertilizers” 
based on arbuscular mycorrhizal fungi is another example. 
This has led to a global spread of these species (Thomsen 
& Hart, 2018). Although they can have long-term effects 
on ecosystems, such alien species tend to go unnoticed 
(Velásquez et al., 2018) or, in the case of “biofertilizers”, 
unrecognized as an invasion. Some unnoticed alien 
fungal species may be mutualists associated with only 
one symbiont species, for example as a plant endobiont. 
If that symbiont is itself an invasive alien species, a case 
can be made that the unnoticed mutualist too is behaving 

invasively by contributing to the success of its associated 
invasive alien plant. Therefore, an as yet unknown 
number of additional fungal invasive alien species may 
remain undetected.

Most parasitic fungi affect plants (Anderson et al., 2004). 
Examples of invasive alien species include Cryphonectria 
parasitica (blight of chestnut; Gruenwald, 2012), 
Ophiostoma spp. including Ophiostoma novo-ulmi (Dutch 
elm disease; Brasier & Kirk, 2000), Cronartium ribicola 
(white pine blister rust), Austropuccinia psidii (myrtle rust), 
and Discula destructiva (dogwood anthracnose). More 
aggressive genotypes of known plant pathogenic fungi may 
also arrive as alien species and later become invasive (Arenz 
et al., 2011). Also important are invasive alien oomycetes 
such as Phytophthora pinifolia causing needle disease in 
Pinus radiata (radiata pine) in Chile (Durán et al., 2008) and 
hybridization of oomycetes in the genus Phytophthora that 
can cause serious damage to agriculture, horticulture, and 
forestry (Érsek & Nagy, 2008).

Alien and invasive alien fungi that are pathogenic to animals 
include Batrachochytrium dendrobatidis (chytrid fungi) and 
Batrachochytrium salamandrivorans (chytrid fungi) which are 
the agents of chytridiomycosis, a disease spread by trade 
and causing massive global amphibian declines (Berger et 
al., 2016; Weldon et al., 2004), and Pseudogymnoascus 
destructans (white-nose syndrome fungus) in bats (Hendrix 
& Bohlen, 2002; Hovmøller et al., 2016; Sikes et al., 2018; 
Thakur et al., 2019).

2.3.3.2 Chromista, bacteria, protozoans, 
and viruses

Chromista and other eukaryotic protists constitute several 
biological kingdoms independent of those for animals, 
fungi, and plants. Their underlying phylogeny remains poorly 
understood, with classifications frequently and often radically 
changing as molecular evidence becomes available. 
Chromista includes major groups of ecologically highly 
significant organisms, including many marine algae, diatoms 
and oomycetes. Note that some groups of Chromista, 
which are usually considered algae, are addressed in 
section “Algae” (section 2 .2 .2 .3). Here, taxa of the groups 
Oomycota, Actinobacteria, Chlamydiae, Cyanobacteria, 
Firmicutes, Proteobacteria and viruses are included.

Along with the true fungi, the Oomycota (with few 
exceptions including Phytophthora) have rarely been 
analysed within the context of biological invasions. Recent 
advances in molecular analyses, however, have shown 
that at least some of these species have defined natural 
distributions and can be considered alien if introduced 
by humans beyond the native range. The emergence of 
microbial invasive alien species, pathogenic or not, is thus a 
global phenomenon and a major threat in invasion ecology 
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(Jack et al., 2021; Litchman, 2010; Mawarda et al., 2020; 
Ricciardi et al., 2017; Thakur et al., 2019). 

Trends 

The numbers of alien oomycetes have risen continuously 
since 1900 (Figure 2 .24; Santini et al., 2013), as has the 
numbers for other alien microorganisms as well (Figure 
2 .25). The new arrivals include some species which are 
causal agents of serious plant diseases (Blehert et al., 2009; 
Fisher et al., 2009; Robert et al., 2012; Singh et al., 2008). 
Global trade is a major driver of oomycete invasions as they 
are usually unintentionally introduced on their hosts or as 
contaminants of goods (Sikes et al., 2018). In particular, 
plants transported with intact root systems, and particularly 
with soil, are likely to host potentially alien oomycete 
species, both beneficial and pathogenic. 

Historically, there have been several oomycete invasions that 
have had huge impacts on humans. The most prominent 
is Phytophthora infestans (Phytophthora blight) introduced 
in the 1800s from North America to Europe. The dispersal 
of Phytophthora infestans is well documented with multiple 
periods of intense spread over the past 200 years (Fry, 
2008). It was the main cause of repeated total potato crop 
failures resulting in massive famines with millions of deaths 
and a huge wave of emigration by hundreds of thousands of 

Europeans (Woodham-Smith, 1962; Yoshida et al., 2013). 
Importantly, Phytophthora species can hybridize, attain 
greater vigour, and potentially infect a wider host range 
relative to parent species thereby creating a serious threat to 
managed and natural systems (Van Poucke et al., 2021). 

Status 

Well-documented microbial invaders are typically pathogenic 
organisms which are detected because of their devastating 
impacts. Anderson et al. (2004) provided a list of emerging 
infectious diseases including Phytophthora ramorum 
(sudden oak death; Gruenwald, 2012).

Biological invasions caused by viruses are also extremely 
relevant in the context of plants as they account for almost 
50 per cent of their emerging infectious diseases (Anderson 
et al., 2004). In many cases they are transmitted by an 
invasive alien host species such as Bemisia tabaci (tocacco 
whitefly), which can transmit over 114 virus species (D. R. 
Jones, 2003). Despite its tropical origin, there have been 
outbreaks of Ralstonia solanacearum biovar 2 (brown potato 
rot) in Europe where it survives the winter in waterways 
in association with endemic plants (Stevens & van Elsas, 
2010). Many pathogenic microbes are thought to be alien 
species in the areas in which they were found (Rúa et 
al., 2011).

Figure 2  24  Status, trends, and data gaps for established alien oomycetes .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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Figure 2  25  Status, trends, and data gaps for established alien Chromista, bacteria, 
protozoans, and viruses .

The number of established alien species per region (upper left) and the amount of available data (upper right) are indicated by colour. 
The amount of available data is estimated by the proportion of available first records among all records available for that region 
(section 2 .1 .4 for further details). Grey regions denote areas with lacking data. Oceans are tinted for visualization and do not indicate 
species numbers. Trends are shown in lower panels for cumulative numbers and as a rate of increase (i.e., numbers of established 
alien species per five years). Smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data 
sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

Detection of non-pathogenic microbial species is more 
difficult because their impacts can be more subtle and do 
not result in mortality or disease and are therefore harder to 
quantify unless previously identified impacts are specifically 
looked for. Co-invasion of non-pathogenic microbes with 

plants has been detected in California, United States 
where genomic analyses revealed that Ensifer medicae, a 
bacterial symbiont associated with the legume Medicago 
polymorpha (bur clover), was introduced from Europe 
(Porter et al., 2018). Similarly, colonization of New Zealand 

Table 2  18   Top 10 most widespread invasive alien taxa of the groups Chromista and 
bacteria worldwide .

The number of regions where the respective species has been recorded and classified as invasive based on GRIIS (Pagad et al., 
2022). Note that this table only refers to the distribution of invasive alien species rather than their impacts which are covered in 
Chapter 4 (see section 2 .1 .4 for further details on data sources and data processing). “No. of regions” denotes the number of 
regions with confirmed occurrences of that species according to the chapter database. A data management report for the data 
underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species No . of regions Species No . of regions 

Vibrio cholerae (cholera) 17 Phytophthora cambivora (root rot of forest 
trees)

3

Aphanomyces astaci (crayfish plague) 13 Phytophthora cactorum (apple collar rot) 2

Phytophthora cinnamomi (Phytophthora dieback) 5 Phytophthora gonapodyides (oomycetes) 2

Phytophthora ramorum (sudden oak death) 4 Phytophthora infestans (Phytophthora blight) 2

Yersinia pestis (black death) 4 Phytophthora plurivora (oomycetes) 2

https://doi.org/10.5281/zenodo.7615582
https://doi.org/10.5281/zenodo.7615582
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by European Lotus corniculatus (bird’s-foot trefoil) coincides 
with the introduction of its symbiotic partner, the bacterium 
Mesorhizobium loti (Sullivan et al., 1995, 1996).

In most cases, it is unknown whether these introductions 
spread to other hosts in the introduced habitats which might 
potentially lead to the displacement of native symbiotic 
species. Although most known microbial introductions have 
been reported from Europe, South America, Australia, and 
New Zealand, these data might be biased by the number of 
papers published from each country (Vellinga et al., 2009). 
Table 2 .18 lists the 10 most widespread invasive alien 
Chromista and bacteria and the number of regions each 
has invaded.

2.3.3.3 Data and knowledge gaps

Data and knowledge gaps for fungi are vast. Fungi are 
frequently unnoticed or unreported, particularly in regions 
where scientific infrastructure is minimal (Desprez-Loustau 
et al., 2010). Information about alien fungi in different 
regions can vary tremendously, with biases associated 
with available scientific infrastructure, taxonomic expertise, 
crop production, and trade routes (Desprez-Loustau et al., 
2010; Lofgren & Stajich, 2021). There are generally far fewer 
records of fungi than for animals and plants, even from 
areas with a strong tradition of fieldwork. There are several 
estimates of the total number of fungal species, with values 
ranging from 2.2 to 5.1 million, to as many as 11.7 to 13.2 
million species (Lofgren & Stajich, 2021). These millions 
of predicted fungal species greatly eclipse the 146,155 
species that are so far discovered and named (Kirk, 2021) 

and indicate that as many as 98.8 per cent of all fungal 
species await discovery. Although the rate of new species 
discoveries has accelerated since the advent of DNA 
technologies, at the current rate of about 2,000 new fungal 
species described each year (Cheek et al., 2020), it will be 
at least a thousand years before a comprehensive inventory 
of fungal diversity is made.

The continued paucity of rapidly accessible and reliable 
information for fungi remains a major hurdle for identifying 
new fungal invasive alien species, particularly cryptogenic 
fungi, as their initial establishment phase, which is the only 
stage at which effective countermeasures are feasible, often 
remains unnoticed until major damage is done (McMullan 
et al., 2018). Another important knowledge gap is an 
insufficient understanding of the taxonomic limits of fungal 
species. This hinders effective quarantine of animal and 
plant pathogens. Using molecular phylogenetics, several 
disease-causing microfungi were found to belong to 
species complexes, and incorrect identifications have led to 
confusion (Coleman, 2016; X. Lin & Heitman, 2006; Thines 
& Choi, 2016). 

As with fungi, only 10 per cent of all probable oomycete 
species are estimated to be known and described (Thines, 
2014), a large knowledge gap. Information about non-
terrestrial species is similarly limited, although several 
invasions by aquatic algae have been documented (Acosta 
et al., 2015), including the Prymnesium parvum (golden 
algae) which has successfully established in freshwater 
ecosystems in several locations in the United States (Roelke 
et al., 2016; see also section 2 .2 .2 including Algae).

Box 2  3   Evolution during biological invasions .

Biological invasions have been instrumental in demonstrating that 
evolution can be rapid enough to contribute to contemporary 
ecological dynamics and that feedback between ecology and 
evolution can occur within a few generations (so-called “eco-
evolutionary dynamics”; Carroll et al., 2007; Hendry, 2020). 
Evolution can influence the trends and status of biological 
invasions by enhancing dispersal rates that lead to species 
range expansion, improving alien species’ performance, and 
increasing adaptation to novel environments (Suarez & Tsutsui, 
2008; Vellend et al., 2007). Indeed, approximately half of the 
investigated plants and animals show increased size and 
fecundity in their new range (Parker et al., 2013); many of these 
differences are likely to have a genetic basis. Adaptive evolution 
(i.e., evolutionary changes that increase the chance of survival 
and reproduction) is thought to be common for alien species, 
especially alien plants (Hodgins et al., 2009). A well-known 
animal example is Rhinella marina (cane toad), which has evolved 
longer legs and faster movement as its alien range has expanded 
across Australia (Phillips et al., 2006). 

Observations of evolution during invasion initially presented 
researchers with a paradox. Newly introduced populations 
tend to be small and are therefore expected to contain low 
genetic diversity, thereby limiting the population’s ability to 
respond to selection (Sakai et al., 2001). However, some 
populations that undergo founder effects and genetic 
bottlenecks can evolve rapidly (Dlugosch & Parker, 2008). In 
fact, low genetic variation can facilitate invasive behaviour. 
For example, loss of genetic variation may have reduced 
intraspecific aggression among alien populations of 
Linepithema humile (Argentine ant), leading to the formation of 
competitively dominant “supercolonies” (Tsutsui et al., 2000). 
Other successful invasive alien species have been introduced 
multiple times and in high numbers (i.e., high propagule 
pressure), offsetting founder effects and limiting genetic 
bottlenecks (Roman & Darling, 2007). Indeed, introductions 
of individuals from different parts of a species’ native range 
can create genetic admixtures (a mixture of previously distinct 
genetic lineages), boosting levels of standing genetic variation 
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Box 2  3  

in the new range (Meyerson & Cronin, 2013) and potentially 
providing fitness advantages through hybrid vigour and 
increased variation, on which selection can act (S. R. Keller 
& Taylor, 2010). The contribution of novel mutations in large 
invasive alien populations also cannot be discounted (Colautti 
& Lau, 2015). 

Hybridization and introgression

Genetic variation can also be enhanced during invasion by 
hybridization among species and interbreeding between native 
and introduced genotypes (Meyerson et al., 2010; Meyerson 
& Cronin, 2013); these mechanisms occur commonly and 
can play an important role during invasion (Hovick & Whitney, 
2014; Largiadèr, 2008). Hybridization can facilitate successful 
invasions if it is beneficial and increases fitness (Bossdorf et al., 
2005; Ellstrand & Schierenbeck, 2000; Meyerson et al., 2010; 
Rius & Darling, 2014); and may help a species overcome Allee 
effects associated with small sizes of introduced populations 
(Yamaguchi et al., 2019). For example, hybridization between 
Sporobolus alterniflorus (smooth cordgrass), which was 
deliberately introduced to the North American Pacific coast 
from its Atlantic-coast native range, and native Sporobolus 

foliosus (California cordgrass) have generated highly invasive 
hybrid populations (Daehler & Strong, 1997). Particularly 
in plants, polyploidy (i.e., genome duplication), sometimes 
in association with hybridization (Strong & Ayres, 2013), is 
linked with the success of some alien species through several 
mechanisms, including enhanced genetic variability (Suda et 

al., 2015; te Beest et al., 2011). Nonetheless, how frequently 
the benefits of hybridization outweigh the negative effects is still 
poorly understood (Hodgins et al., 2018).

Plasticity and adaptation

Invasive alien populations with low genetic variation can also 
respond to environmental variation in a new range through 
phenotypic plasticity (Torchyk & Jeschke, 2018). Through 
plasticity, a single genotype can undergo physiological, 
phenological, and morphologic changes in response to 
environmental conditions, which can have significant 
evolutionary implications (Schlichting, 1986). While it is 
expected that plasticity will support the establishment and 
spread of alien species introduced to novel environments 
(Richards et al., 2006), support for the hypothesis that invasive 
alien species display greater plasticity than native or non-
invasive alien species is mixed (A. M. Davidson et al., 2011; 
Meyerson et al., 2020; Palacio-López & Gianoli, 2011; Torchyk 
& Jeschke, 2018). Phenotypic variation can also be generated 
during invasions through epigenetic mechanisms, that is 
heritable DNA modifications without changes in the genetic 
code (Bossdorf et al., 2008). While epigenetic variation has 
been associated with some successful invasions (C. Liu et al., 
2020; Richards et al., 2012), it is too early to generalize about 
the importance of this mechanism for invasions (Bock et al., 
2015). Invasive alien species can also adapt to environmental 
conditions in their new range and increase their abundance, 

though few empirical studies have quantified these links 
(Hodgins et al., 2018). For example, Lythrum salicaria (purple 
loosestrife) in North America has experienced demographic 
benefits of adaptation estimated to be equivalent to those 
that the species enjoys from natural enemy release (Colautti & 
Barrett, 2013).

Data and knowledge gaps

A key uncertainty is how much evolution favours or hinders the 
outcome of a biological invasion, for example, by making the 
difference between invasion success and failure (Bock et al., 
2015). To this end, perspectives from ecology and evolution 
could be further integrated by combining genomic tools 
with more classical experimental and comparative studies to 
test the mechanisms and consequences of evolution during 
invasion (Holman et al., 2019; McCartney et al., 2019). Another 
critical question is to what extent evolution allows alien species 
to colonize environments that are outside of their native-range 
ecological niches (Moran & Alexander, 2014; Pearman et al., 
2008). Settling this question is important for commonly used 
tools such as species distribution models to forecast potential 
distributions of alien species (Pearman et al., 2008). Finally, 
studies of invasions have shown that some species can 
rapidly adapt to changing environments (Colautti & Lau, 2015; 
Hodgins et al., 2018). Alien species may be exceptionally 
responsive to interacting global-change drivers (Moran & 
Alexander, 2014), such as climate change or land-use change, 
a topic warranting further research (Chapter 3, sections 3 .5 
and 3 .6 .1).

Linking evolution and molecular tools 
to invasive alien species impacts 
and management

Just as alien species adapt to their novel environments, so too 
have native species evolved in response to the novel selection 
pressures posed by alien species. Evolutionary responses to 
exposure to alien competitors appear to be widespread in 
plants (Oduor, 2013). Thus, evolution may partially mitigate 
the negative impacts of invasive alien species on native 
communities (Carroll, 2011). This understanding also points to 
ways in which genetic tools and evolutionary principles may 
help to mitigate some of the impacts of invasive alien species 
(Chown et al., 2015; Lankau et al., 2011).

Information about the evolutionary/phylogeographic history 
of alien species obtained by using molecular markers and 
up-to-date statistical methods can also have several practical 
benefits for alien species monitoring and management 
(Lankau et al., 2011). Such knowledge can improve the 
efficacy of biocontrol programmes by targeting biocontrol 
agents from within the source region of a given invasive alien 
species (Chown et al., 2015) and provide better delimitation 
of source regions and introduction pathways, which can be 
obtained using high-resolution genomic tools (Hudson et 

al., 2021, 2022). While it is widely recognized that biological 
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2.4 TRENDS AND STATUS 
OF ALIEN AND INVASIVE 
ALIEN SPECIES BY IPBES 
REGIONS

This section reports on the temporal trends and status of 
the distribution of alien and invasive alien species across 
IPBES regions (section 2 .4 .1), and for the individual IPBES 

regions Africa (section 2 .4 .2), the Americas (section 2 .4 .3), 
Asia and the Pacific (section 2 .4 .4), and Europe and Central 
Asia (section 2 .4 .5), and their respective sub-regions. A 
description of IPBES regions and sub-regions including a 
spatial representation is provided online (IPBES Technical 
Support Unit On Knowledge And Data, 2021) and in 
Chapter 1, section 1 .6 .4. For each IPBES region, dynamics 
on islands and data and knowledge gaps are provided as 
well. A global synthesis on the dynamics on islands and in 
protected areas is provided in boxes (Boxes 2 .4 and 2 .5). 
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Figure 2  26  Trends in numbers of established alien species across IPBES regions . 

The panels show cumulative numbers of established alien species for different taxonomic groups. Numbers shown underestimate the 
actual extent of established alien species occurrences due to a lack of data (section 2 .1 .4 for further details about data sources and 
data processing). Note numbers presented may deviate from those reported in the text due to variation among data sources. A data 
management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

Box 2  3  

invasions constitute a natural experimental framework for 
the study of contemporary evolution, a good understanding 
of source regions and introduction pathways (i.e., routes 
of invasion/introduction) is essential. Knowledge of those 
routes makes it possible to precisely compare introduced 
populations to their original source population(s) and 
thus determine whether the invaders have, for example, 
undergone an adaptive change that has favoured them in 
their new living environment. This change may result from the 
selection of genetic variants that are rare in the original source 
population(s) but favoured in the new environment. The 

reconstruction of routes of invasion/introduction is, therefore, 
crucial to define and test different hypotheses concerning 
the environmental and evolutionary factors underlying 
biological invasions and their success (Estoup & Guillemaud, 
2010; S. R. Keller & Taylor, 2008). Bulk screening by using 
metabarcoding approaches may be used to flag recognized 
invaders at ports of entry and so prevent the introduction 
of harmful species (or new genotypes of already introduced 
species). The potential for molecular instruments to detect the 
spread of invasive alien species is important, although many 
challenges remain (Handley, 2015).

https://doi.org/10.5281/zenodo.7615582


CHAPTER 2. TRENDS AND STATUS OF ALIEN AND INVASIVE ALIEN SPECIES

129

2.4.1 Overview of trends and 
status by IPBES regions

Trends

The number of established alien species records has 
increased for all taxonomic groups and for all IPBES regions 
since 1500 with particularly steep escalations observed after 
1800 (Figure 2 .26). Before 1800, the number of records is 
particularly low for insects and crustaceans. However, this 
is likely because of the lack of data, which is particularly 
common for invertebrate groups (section 2 .3 .1 .11). 
Likewise, the comparatively high numbers of established 
alien species observed for Europe and Central Asia is likely 
influenced by the higher availability of records for Europe 
and biases in the underlying database. Nonetheless, no 
saturation of established alien species is observed for any 
region (Seebens, Essl, et al., 2017).

Status

Across taxonomic groups, vascular plants provide the by 
far largest contribution to global established alien species 
numbers, followed by insects and fishes (Table 2 .19). For 
many taxonomic groups, all IPBES regions except Africa 
report similar numbers of established alien species (Table 
2 .19). For instance, the numbers of alien vascular plant 
species reported for the Americas, Asia and the Pacific, 
Europe and Central Asia are comparable in their range, while 
the numbers for Africa are much lower. Similar patterns are 
observed for alien bird and fish species. On the other hand, 
algae show a different pattern with Europe and Central Asia 
harbouring the highest established alien species numbers, 
followed by the Americas, Asia and the Pacific, and Africa. 
However, this pattern may be influenced by variation in 
research intensity around the world. Box 2 .6 also presents 
an overview of alien and invasive alien species on land 
managed by Indigenous Peoples and local communities.

Table 2  19   Numbers of established alien species across IPBES regions . 

Numbers of established alien species can vary depending on data sources. For mammals, birds, and vascular plants, ranges of 
values indicate variation among databases (section 2 .1 .4 for further details about data sources and data processing). Note presented 
numbers may deviate from those reported in the text due to variation among data sources. A data management report for the data 
underlying this table is available at https://doi .org/10 .5281/zenodo .7615582

Africa Americas
Asia and the 

Pacific
Europe and 
Central Asia

Total

Mammals 30-80 83-164 97-163 72-164 197-368

Birds 121-133 249-287 287-336 221-630 495-877

Fishes 187 803 633 469 1,451

Reptiles 158 192 103 98 411

Amphibians 12 62 43 43 135

Insects 344 2,636 2,017 2,747 6,795

Arachnids 94 207 129 289 500

Molluscs 142 255 261 584 826

Crustaceans 111 213 149 451 813

Vascular plants 3,109-4,498 8,005-9,325 6,141-9,101 5,146-8,519 13,081-18,543

Algae 58 193 157 526 734

Bryophytes 0 48 32 23 88

Fungi 122 363 363 609 1,149

Oomycetes 4 12 12 59 70

Bacteria and protozoans 4 14 12 23 38

Total 5,033-6,484 14,853-16,292 11,722-14,797 13,754-17,628 26,783-32,798

https://doi.org/10.5281/zenodo.7615582
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Box 2  4   Protected areas: A global assessment of trends and status of alien and invasive 
alien species .

Protected areas around the world are crucial for preserving 
and sustaining biodiversity, ecosystem processes and human 
well-being (Gaston et al., 2008; Naughton-Treves et al., 2005). 
Increasingly, these areas are being threatened by numerous 
drivers of change in nature that are challenging the effective 
management of over 200 thousand protected areas globally 
(Osipova et al., 2017; UNEP-WCMC et al., 2021). Biological 
invasions constitute a major threat to protected areas 
(Goodman, 2003; Osipova et al., 2017; Pyšek, Hulme, et al., 
2020; Schulze et al., 2018), a concern that dates back to the 
1860s (Foxcroft et al., 2017). 

Seminal work on invasions in terrestrial protected areas 
carried out during the Scientific Committee on Problems of 
the Environment (SCOPE) project in the 1980s found that 
all 24 studied terrestrial protected areas faced challenges 
from invasive alien species and that invasions were not only 
an issue within disturbed sites (Mooney et al., 2005; Usher, 
1988), but also in relatively undisturbed nature reserves. The 
SCOPE report also found that islands faced higher threats 
than mainland areas, that there was an inverse relationship 
between protected area size and the number of introduced 
species in arid land and chaparral biomes, and that there 
was positive correlation between number of human visitors 
and the presence of invasive alien species (Usher, 1988). In 
a study that revisited 21 of the originally studied protected 
areas and compared how the status of biological invasions 
has changed over the last 30 years, Shackleton et al. (2020) 
found that of all the taxa analyzed, invasive plants pose the 
greatest continued threat, and their numbers have increased 
in 31 per cent of the protected areas. Mammal invasions now 
represent a lesser threat due to effective management in many 
protected areas, with fewer invasive alien mammals now listed 
in 43per cent of protected areas. Invasions by amphibians, 
reptiles, and fish have remained fairly stable over the past three 
decades (R. T. Shackleton, Foxcroft, et al., 2020). The limited 
number of study sites included were biased towards mainland 
United States and Africa making regional comparisons and 
trends hard to meaningfully assess. More comprehensive 
global assessments using similar methods would address a 
major knowledge gap and better evaluate status and change 
globally providing important information for international policy 
(Glossary) mandates.

The subsequent uptake of coordinated global academic 
projects on protected areas has been limited, particularly for 
marine systems leaving many knowledge gaps on the status of 
invasive alien species in protected areas and the broad-scale 
status trends. According to Shackelton et al. (2020) there is 
a lack of data on freshwater invertebrates, marine species, 
and other taxa creating a taxonomic bias in invasion science. 
However, some review and synthesis work (e.g., Foxcroft et al., 
2013, 2017; X. Liu et al., 2020; R. T. Shackleton, Bertzky, et 

al., 2020; R. T. Shackleton, Foxcroft, et al., 2020; see above) 
has strengthened information on the current status and key 

trends of invasive alien species in protected areas globally, but 
each effort has limitations and greater coordination on taxa and 
management is needed. 

In “Plant invasion in Protected Areas”, Foxcroft et al. (2013) 
identified and illustrated key impacts of invasive alien species 
and outlined some mechanisms of invasion in protected areas 
and contributed to assessing management interventions, 
helping to synthesize and outline both the status of invasive 
alien species in protected areas and key knowledge gaps. 
Drawing on 14 case studies from around the world that 
included information from over 135 protected areas globally, 
the authors detailed assessments and baseline information 
and elucidated regional patterns and threats. One surprising 
result was that while intentional introductions of invasive alien 
species into protected areas have been assumed to be low, 
this is not the case. This point is further supported by Foxcroft 
et al. (2008) and Toral-Granda et al. (2017). Authors show 
that even Arctic regions now face challenges from invasive 
alien species (Shaw, 2013). Very few protected areas globally 
have good baseline information and only a handful of well-
studied protected areas have robust invasive alien species 
lists available. Regionally there are also large differences in 
monitoring and information. The United States, Oceania, 
and some parts of Europe have more information than other 
regions. For example, J. A. Allen et al. (2009) highlight that 
there are over 7.3 million ha of invasions in 218 protected 
areas in the United States, with over 20,300 distinct invasion 
clusters by over 3,750 invasive alien species. In Central and 
Western Europe, Braun et al. (2016) collected and collated 
data on 53 invasive plant species in 46 large, protected areas 
finding that in 86 per cent of protected areas at least one of the 
46 target invasive plants was present, and that 80 per cent of 
protected areas did conduct some form of management. The 
mean number of invasive plants was 11.2 per protected area, 
however, most of them only managed a mean 4.3 species 
accounting for around 3 per cent of park budgets. Interestingly, 
park size and age had no effect on invasive alien species 
presence or management.

A review on plant invasion science research in protected areas 
(Foxcroft et al., 2017) yielded some important information 
on trends and status highlighting key advances in invasion 
science in protected areas, important policies starting with 
the Convention Relative to the Preservation of Fauna and 
Flora in their Natural State in 1933, the twelfth meeting of 
the Conference of the Contracting Parties to the Ramsar 
Convention on Wetlands in 2015, and 13 other important 
policy support mechanisms in-between. This review also 
identified 59 of the most common invasive plants in protected 
areas: eight species (Arundo donax (giant reed), Pontederia 

crassipes (water hyacinth), Lantana camara (lantana), Melia 

azedarach (Chinaberry), Poa annua (annual meadowgrass), 
Psidium guajava (guava), Robinia pseudoacacia (black locust), 
and Rumex acetosella (sheep’s sorrel)) occur in more than 



CHAPTER 2. TRENDS AND STATUS OF ALIEN AND INVASIVE ALIEN SPECIES

131

Box 2  4  

150 protected areas globally. The review showed that North 
America and Europe dominate work on plant invasions in 
protected areas globally, followed by Africa and Oceania, with 
very limited knowledge from other world regions, particularly in 
South America and Asia. 

More recently, key syntheses have assessed the trends and 
status of invasions in terrestrial and inland waters protected 
areas globally (e.g., X. Liu et al., 2020; R. T. Shackleton, 
Bertzky, et al., 2020). X. Liu et al. (2020) assessed the 
establishment of 894 terrestrial alien vertebrates and 
invertebrates in almost 200 thousand protected areas globally 
and found that very few (over 10 per cent) of protected areas 
harbour established alien animals, but the majority (89–99 
per cent) have an established population of at least one alien 
animal species within 10-100 km from their borders. There are 
520 alien animal species in protected areas globally, the most 
common being birds (4.7 per cent of the protected areas, 252 
species), followed by mammals (3.7 per cent, 91 species), 
invertebrates (2.2 per cent, 63 species), amphibians (0.5 
per cent, 48 species) and reptiles (0.4 per cent, 66 species) 
(X. Liu et al., 2020). X. Liu et al. (2020) highlight that larger 
protected areas, those more recently inscribed, and those 
with a higher protection status were surprisingly more prone 
to a higher richness of alien animals. Furthermore, X. Liu et al. 
(2020) found that globally, protected areas in some regions 
and biomes are more at risk from alien animals, including birds, 
mammals, invertebrates, amphibian and reptiles; particularly 
in (sub)tropical Pacific and Caribbean Islands and New 
Zealand, as well as temperate mixed forests, savannas, and 
grasslands in the United States, western Europe, and Australia. 
Additionally, X. Liu et al. (2020) highlight that Africa and Asia are 
most often donors of alien animal species with North America 
and Europe being key recipient areas (Figure 2 .27).

Shackleton, Bertzky, et al. (2020) assessed the status of 
biological invasions and their management in 241 natural 
and mixed World Heritage Sites globally and found that just 
over half (53 per cent) were explicitely or implicitly reported 
to be threatened by invasive alien species through formal 
IUCN/ United Nations Educational, Scientific, and Cultural 
Organization (UNESCO) monitoring initiatives. It is suspected 
that this number is much higher. Almost 300 different invasive 
alien species were reported to be invading World Heritage 
Sites. However, detailed information through UNESCO and 
IUCN monitoring programmes yielded limited and inconstant 
information so broad-scale trends were hard to assess. 
To overcome this a seven-step monitoring and reporting 
framework was developed to better collate data moving 
forward. This includes: (i) evaluating pathways, (ii) compiling 
inventories of species, (iii) identifying current impacts, (iv) 
reporting on management, (v) predicting future threats and 
management needs, (vi) identifying knowledge gaps, and 
(vii) assigning an overall threat level. This framework could 
easily be used in all categories of protected areas and 
could be a priority moving forward to improve monitoring 
and understanding.

Marine protected areas “… as oases of biodiversity, serve as 

the last rampart against these invasive alien species” (Francour 
et al., 2010). Alas, this is a wishful premise and biological 
invasions are having a large impact on marine protected areas 
worldwide. Large-scale global syntheses on the topic of marine 
invasions and protected areas are lacking, however, research 
on certain areas and species has provided important insights 
which are summarized here. Generally, European oceans and 
seas, as well as northern Atlantic and Pacific oceans, are most 
at threat from marine invasive alien species (M. J. Costello et 

al., 2021). More specifically, 53 marine alien species, nearly 
all newly reported or newly recognized as introduced, were 
recently documented in the Galápagos Marine Reserve, which 
is a large, biologically diverse and remote protected area 
(Carlton et al., 2019). Surveys of rocky reef fish assemblages 
conducted since 2000 in Mediterranean marine protected 
areas showed no differences in invasive fish density and 
biomass as compared to adjacent unprotected areas. In the 
south and eastern Mediterranean Sea invasive alien species 
have higher species richness and biomass as compared to 
local fish biota (D’Amen & Azzurro, 2020; Galil, 2017; Giakoumi 
et al., 2019; Guidetti et al., 2014). Indeed, a recent assessment 
in protected areas along the Mediterranean coast of Turkey 
identified 289 alien vertebrates, invertebrates and algae 
(Bilecenoğlu & Çınar, 2021). The reduction of protected areas 
to nursery sites for certain invasive alien species is most acute 
in the South-eastern Mediterranean but occurs throughout the 
sea and in the adjacent Atlantic (Blanco et al., 2020; Cacabelos 
et al., 2020; Mazaris & Katsanevakis, 2018; Wangensteen 
et al., 2018). From a species point of view, the spread of the 
venomous Indo-Pacific lionfish, Pterois volitans (red lionfish) 
and Pterois miles (lionfish), across the tropical western Atlantic 
and the Caribbean Sea was swift, not sparing marine protected 
areas, including large, established, well-cared for and remote 
ones (e.g., Florida Keys National Marine Sanctuary, United 
States; Flower Garden Banks National Marine Sanctuary, 
United States; The Parque Nacional Arrecife Alacranes, 
Mexico) (Johnston et al., 2013; López-Gómez et al., 2014; 
Ruttenberg et al., 2012), illustrating the threat that invasive 
marine species pose to conservation. Poor management and 
the lack of effective policies have been nullifying conservation 
goals in marine protected areas in regions exposed to 
biological invasions (Bilecenoğlu & Çınar, 2021; B. Galil, 2017; 
Mazaris & Katsanevakis, 2018; Chapters 5 and 6). 

Foxcroft et al. (2017) mention three key needs to better 
understand the current status of biological invasions and 
their management in protected areas globally and to better 
assess key trends. These include (i) establish a global 
working group to better coordinate research, (ii) develop 
standardized protocols and tools for large-scale and long-
term monitoring of invasive alien species in protected areas 
globally, and (iii) better account for and respond to different 
socioecological contexts in research and management. 
Importantly, many regions of the world have limited baseline 
and empirical evidence concerning biological invasions and 
their management making this fundamental research crucial. 
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Box 2  5   Islands: A global assessment of trends and status of alien and invasive alien 
species .

One-quarter of the countries in the world are islands or 
groups of islands, and over two-thirds of all countries include 
islands (Russell & Kueffer, 2019). Taken together, the Earth’s 
islands represent 5.3 per cent of the total land surface (Global 
Islands Network, 2021; Tershy et al., 2015). Because of their 
very high rates of endemism (9.5 and 8.1 times higher than 
continents for vascular plants and vertebrates, respectively), 
and with over 20 per cent of the world’s terrestrial species, 
islands are considered centres of biodiversity (Kier et al., 2009). 
As a result, 10 of the 35 world’s biodiversity hotspots (i.e., 
regions where biodiversity is both the richest and the most 
threatened (Mittermeier et al., 2011) are entirely, or largely 
consist of, islands (Bellard et al., 2014). Globally, islands 
represent concentrated regions of biodiversity loss in the 
past and present, and this trend is predicted to continue in 
the future (Russell & Kueffer, 2019; Whittaker & Fernández-
Palacios, 2006).

Islands harbour some of the highest numbers of established 
alien species (Dawson et al., 2017; Essl et al., 2019), 
particularly small and remote tropical and sub-tropical islands 
with high numbers of invasive alien plants per unit of surface 
(Pyšek, Pergl, et al., 2017), a pattern that holds across 
taxonomic groups (Moser et al., 2018; Turbelin et al., 2017). 
This is especially acute in former European island colonies with 
long histories of repeated species introductions (Turbelin et al., 
2017). Furthermore, nearly 50 per cent of all species at risk 
(Glossary) of extinction on the IUCN Red List are found on 
islands and species on islands are more likely to be threatened 
by biological invasions (almost three-quarters of threatened 
species; Leclerc et al., 2018). While all threats interact on 
islands to cause declines in native species abundance, 
biological invasions consistently lead to the extinction of insular 
populations, particularly through predation and disease (Russell 
& Kueffer, 2019; Chapter 4, section 4 .3 .1 .1). However, 

Box 2  4  

The collection of baseline data is increasingly being conducted 
in data poor areas (e.g., Bhatta et al., 2020; Foxcroft et 

al., 2017; Padmanaba et al., 2017), but more is needed. 
Furthermore, improved monitoring and assessment globally 
is important to answer long-standing and disputed questions 
relating to invasions in protected areas. For example, whether 
or not protected areas impose biotic resistance (Glossary) 
against invasions (Meiners & Pickett, 2013). Some evidence 

suggests protected areas act as a barrier, or refuge, against 
invasions (Ackerman et al., 2017; Foxcroft, Jarošík, et al., 
2010; Gallardo et al., 2017), but other studies show the 
contrary (Byers, 2005; Holenstein et al., 2021; Klinger et al., 
2006). Further work drawing on a multitude of taxa in different 
socioecological systems is needed to fully understand the role 
of protected areas in invasions, which is likely to differ by taxa 
and environmental settings. 

Figure 2  27   Numbers of established alien vertebrate species per terrestrial protected 
area .

Among the top 50 protected areas, 32 per cent are located in New Zealand, 26 per cent in Taiwan, Province of China, 16 per 
cent in the United States (mostly on Hawaii), 12 per cent in Great Britain and 6 per cent on Réunion. Adapted from X. Liu et al. 
(2020), https://doi.org/10.1038/s41467-020-16719-2, under license CC BY 4.0. 

https://doi.org/10.1038/s41467-020-16719-2
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particularly independent small island developing states (SIDS) 
and island territories with dependencies on larger continental 
economies (Blackburn et al., 2016; Meyerson & Reaser, 2003; 
Reaser & Meyerson, 2003; Russell et al., 2017) have few 
resources for invasive alien species research, management, 
cooperation, and capacity-building (Reaser & Meyerson, 2003; 
Veitch et al., 2019). 

Trends 

Temporal trends of biological invasions on islands can be 
classified into three distinct periods with contrasting dynamics; 
first contact (Indigenous Peoples and local communities), 
modern history (1500), and the contemporary twentieth 
century onwards era (Keppel et al., 2014; Russell & Kueffer, 
2019; Figure 2 .28). In the first period, island syndromes (Wroe 
et al., 2006) and the lack of refugia on small islands made 
insular species more vulnerable to biological invasions than 
continental species (Wroe et al., 2006). The second period 
corresponds to the “Age of Discovery”, the timing of which 
in different parts of the world coincided with colonization 
of islands by Europeans (Russell & Kueffer, 2019). During 
this period, unintentional and intentional (and sometimes 
repeated) introductions of many animals and plants were 
facilitated by the establishment of regular shipping lines 
(Seebens et al., 2013). This led to successful invasions 
by a large number of species on many islands of various 
ecosystem types (Russell & Kueffer, 2019). The third period 
is associated with globalization that included a distinct 
increase in world trade, migration, and tourism, all of which 
affected islands worldwide. The emergence and rise of rapid 
international transit increased substantially both the diversity 
of introduction vectors and pathways (Hulme, 2009, 2021; 
Meyerson & Mooney, 2007), and the associated number of 
these introductions (van Kleunen et al., 2015). The number, 
frequency, and geographic origin of biological invasions to and 
among islands also increased with time, following the growth 
of human populations on these islands (both residents and 
tourists), as exemplified by the Galapagos (Toral-Granda et 

al., 2017). At the same time, awareness was rising, and more 
research was underway to detect and report new species. 
Other important predictors for established alien species on 
islands are the existence of military bases or paved airfields 
(Denslow et al., 2009). 

Most introduced species on islands today only occupy a 
small portion of their final predicted range and are thus likely 
to expand further (M. J. B. Dyer et al., 2018; Trueman et al., 
2010). In addition, more species from both the existing pool 
of alien species and those species not currently introduced 
outside their native range will continue to colonize and 
establish on islands in the future (Bellard et al., 2017). Islands 
are also disproportionately vulnerable to climate change which 
may increase the rate of establishment and spread of many 
invasive alien species on islands (X. Li et al., 2020). More 
frequent climate-induced disturbances (e.g., flooding, treefall, 
and landslides caused by tropical cyclones) and/or droughts 
increase the invasibility of native ecosystems affecting, for 

instance, the structure of island forests (Boehmer, 2011; 
Ehbrecht et al., 2021; Pouteau & Birnbaum, 2016; Wyse et 

al., 2018).

The accumulation rate of established alien species on islands 
is not slowing and the future invasive alien species will differ 
in type from species that have invaded islands in the past. 
These emerging invasive alien species include groups such as 
microorganisms and pathogens, as well as reptiles from the 
pet trade (Apanius et al., 2000; Russell & Kueffer, 2019), which 
will likely lead to new species interactions with both direct and 
indirect ecological consequences (Forey et al., 2021; J.-Y. 
Meyer et al., 2021). In the future, the vectors and pathways 
of biological invasions are predicted to further evolve and to 
keep interacting with other drivers of change in nature, such as 
climate change (Russell et al., 2017), and will continue to be 
of great concern for biodiversity conservation (Lenzner et al., 
2020; S. Taylor & Kumar, 2016). For instance, climate-induced 
forest decline is likely to increase the vulnerability of Pacific 
Island rainforests to invasive alien plants (Boehmer, 2011; 
Mertelmeyer et al., 2019) and facilitate invasional meltdowns 
(Minden et al., 2010). 

Status

Most islands are affected by biological invasions with 
insular ecosystems being the recipients of 80 per cent of 
documented bird and mammal introductions (Ebenhard, 
1988). At least 65 major island groups have been invaded by 
Felis catus (cat) (Atkinson, 1989) and over 80 per cent of all 
major island groups have also been invaded by Rattus spp. 
(rat) (Atkinson, 1985). If plants and invertebrates are included 
in assessments, biodiversity is most severely affected by 
biological invasions in the Pacific and Atlantic insular regions 
(Leclerc et al., 2018). For plants, 26 per cent (82 islands) 
of islands covered in the GloNAF database harbour more 
established alien than native species (Essl et al., 2019). The 
identity of invasive alien species and their impacts differ by 
region, island type, and associated ecosystems, but the 
cumulative pattern of impacts is consistent across world 
regions (Leclerc et al., 2020). 

Across SIDS, 8,668 presence records for 2,034 potential 
invasive alien species have been registered, 76 per cent of 
which are plants, 23 per cent animals, and 1 per cent fungi, 
chromists, viruses, bacteria, and protozoa (Russell et al., 2017). 
Over half (53 per cent) of these species were identified as 
invasive alien species on at least one SIDS, while information 
was often lacking for the remaining species (Lenz et al., 2021). 
Long-distance transportation by ship and plane dominates 
invasive alien species pathways to islands, distinguishing 
islands from continents and natural colonization in rate and 
type (Hulme et al., 2008), such as for Anolis spp. (anole lizards) 
on Caribbean islands (Helmus et al., 2014). Only one study 
has focused on plant invasions in urban environments of SIDS 
(Lowry et al., 2020). Given rapid changes expected in Pacific 
country urban areas in coming decades, it is a critical to fill this 
gap (ADB, 2012).
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Figure 2  28   Trends in numbers of established alien species for selected islands .

The panels show numbers of established alien species per five-year intervals for those islands with the highest numbers of 
recorded established alien species. Numbers shown underestimate the actual extent of alien species occurrences due to a lack 
of data. Smoothed trends (lines) are calculated as running medians (section 2 .1 .4 for further details about data sources and 
data processing). Note numbers presented may deviate from those reported in the text due to variation among data sources. A 
data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

Box 2  6   Land managed, used or owned by Indigenous Peoples and local communities: 
A global assessment of trends and status of alien and invasive alien species .

Indigenous Peoples and local communities (i.e., typically ethnic 
groups who are descended from and identify with the original 
inhabitants of a given region) manage or have tenure rights 
over a large area of land. For Indigenous Peoples only, it is 
estimated that they manage or have tenure rights for at least 28 
per cent of the total land area worldwide (Garnett et al., 2018). 
Their land (hereafter called “Indigenous lands”) intersects with 
40 per cent of the world’s protected areas and hosts higher 
amounts of natural areas compared to other lands (Garnett et 

al., 2018). Although Indigenous lands are often less inhabited 
and more remote than other lands, they do not escape 
anthropogenic pressures. It is unsurprising to find many alien 
and invasive alien species on lands managed by Indigenous 
Peoples and local communities and indeed has been frequently 
reported from such lands all over the world (Gautam et al., 
2013; Kannan et al., 2016; Ksenofontov et al., 2019; Miranda-
Chumacero et al., 2012; Thorn, 2019). To date, no study has 
investigated the distribution of alien and invasive alien species 
on Indigenous lands.

The following analysis was conducted to deepen the 
understanding about the distribution of alien and invasive alien 

species on Indigenous land. As described in section 2 .1 .4, 
occurrences of populations of more than 17,000 established 
alien species worldwide were obtained using occurrence 
records provided by GBIF and the Ocean Biodiversity 
Information System (OBIS). These point-wise occurrences were 
integrated with a spatial layer of land managed, used or owned 
by Indigenous Peoples (Garnett et al., 2018) to determine the 
total number of established alien and invasive alien species 
recorded on Indigenous lands.

This analysis revealed that, in total, 6,351 established alien 
species have been recorded on Indigenous lands, which is 34 
per cent of all established alien species recorded worldwide in 
this data set. The number of invasive alien species according to 
the GRIIS database (Pagad et al., 2022) amounts to 2,355 (56 
per cent of the total number globally) on these lands, although 
it could not be determined whether the invasive alien species 
pose any impact on these lands (see Chapter 4, section 4 .6 
for a detailed assessment of impacts by Indigenous Peoples 
and local communities). The number of established alien 
species recorded on Indigenous lands is highly correlated 
with the total number of established alien species of the same 

Box 2  5  

https://doi.org/10.5281/zenodo.7615582
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country (t-test: t=12.8, df=77, p<0.001, r=0.82). That is, in 
countries with high numbers of established alien species, those 
numbers are also high on Indigenous lands. However, the 
number of established alien species recorded on Indigenous 
land is on average consistently lower compared to those 
numbers recorded on other lands also after taking area into 
account (Figure 2 .29). Hotspots of occurrences with high 
established alien species numbers on Indigenous lands were 
found all over the world but particularly in Australia (2,624 alien 
species), United States (1,719), Mexico (746), Sweden (690) 
and Russia (650). The same sequence applies to invasive alien 
species numbers, although at a lower magnitude: Australia 

(1,172 invasive alien species), United States (691), Mexico 
(481), Sweden (441), and Russia (436) (Figure 2 .29).

An analysis of the trends of alien and invasive alien species on 
Indigenous lands is currently missing due to a lack of data, but 
it seems very likely that the number of established alien species 
on Indigenous lands increased as observed for other regions 
(Figures 2 .4 and 2 .26) and so are the impacts they cause. A 
clear knowledge gap exists for information about the trends 
and status of invasive alien species in coastal waters managed 
by Indigenous Peoples and local communities.

Figure 2  29   Invasive alien species on Indigenous People’s land . 

(A) Land managed, used or owned by Indigenous Peoples. (B) Species-area relationships for established alien species per 
country (circles) and per area of Indigenous lands (IP) lands (dots), showing a consistently lower number of established alien 
species on Indigenous lands. (C) Number of alien species on Indigenous lands per country. (D) Number of established alien 
species on Indigenous lands per grid cell. A data management report for this figure is available at https://doi.org/10.5281/
zenodo.7615582

2.4.2 Trends and status of alien 
and invasive alien species in Africa
This section reports on the trends and status of established 
alien species of Africa for animals (section 2 .4 .2 .1), plants 
(section 2 .4 .2 .2), microorganisms (section 2 .4 .2 .3), and 
islands (section 2 .4 .2 .4), and provides an overview of 
data and knowledge gaps (section 2 .4 .2 .5). A description 
of IPBES regions and sub-regions including a spatial 
representation is provided online (IPBES Technical Support 
Unit On Knowledge And Data, 2021) and in Chapter 1, 
section 1 .6 .4.

2.4.2.1 Animals

Trends

The first alien mammal species to arrive in Africa were 
probably domesticated bovids, pigs, cats, and dogs 
during the spread of agriculture, followed by commensal 
rodents, mostly limited at present to anthropized and 
densely populated areas (Long, 2003). Other introductions 
took place on the western coast of North Africa where 
Mustela nivalis (weasel) was likely a rodent biocontrol agent, 
Apodemus sylvaticus (long-tailed field mouse), a stowaway, 

https://doi.org/10.5281/zenodo.7615582
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and Bubalus bubalis (Asian water buffalo) livestock. More 
introductions began in the twelfth century such as Suncus 
murinus (Asian house shrew) as a stowaway. A rapid 
increase of mammal introductions during the nineteenth and 
twentieth centuries was mainly due to hunting, ecotourism, 
and the pet trade pathways (Biancolini et al., 2021). 
Acclimatization societies were very active in South Africa 
and carried out numerous bird and mammal introductions 
to “improve” the aesthetic of the South-African landscape 
from a European point of view after the mid-1800s (B. 
W. van Wilgen et al., 2020). In the last century, increasing 
global trade combined with the advent of the game-
farming industry and ecotourism resulted in a striking rise in 
introductions of alien vertebrates and invertebrates (Picker & 
Griffiths, 2017; B. W. van Wilgen et al., 2020).

As for other taxa, African regions with the earliest records 
of established alien species tend to have higher numbers 
of established alien species. For fishes, particularly high 
numbers of established alien species were recorded in 

North Africa due to Lessepsian invasion of marine species 
through the Suez Canal and to its closer socio-economic 
relationship with Europe (Figure 2 .30). Indeed, the number 
of alien fish in North Africa accelerated markedly after 
1869 when the Suez Canal opened (Galil, 2000). In South 
Africa an increasing trend in established alien species 
detections is indicated as the number of marine alien 
species reported has increased from 15 (Griffiths et al., 
1992) to 95 established alien species (T. B. Robinson et 
al., 2020). Although there is no doubt that new species are 
being introduced, other factors are also contributing to the 
increase in introductions, such as deeper historical analyses 
of past introductions (Mead et al., 2011), varying levels of 
available taxonomic expertise across time (Griffiths et al., 
2009), and increased research efforts on underrepresented 
taxa or in under-studied ecosystems (T. B. Robinson et 
al., 2020).

With the exception of plants, the introduction of alien 
species into freshwater systems in Africa has largely been 
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Figure 2  30  Trends in numbers of established alien species for Africa . 

Panels show cumulative numbers (left panels) and numbers of established alien species per five-year intervals (right panels). Numbers 
here underestimate the actual extent of established alien species occurrences due to a lack of data. Lines in right panels indicate 
smoothed trends calculated as running medians (section 2 .1 .4 for further details about data sources and data processing). Note 
presented numbers may deviate from those reported in the text due to variation among data sources. A data management report for 
the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582
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intentional to enhance ecosystem services and promote 
nutritional, economic, or recreational values (Gherardi, 
Britton, et al., 2011; Howard & Chege, 2007; Howard & 
Matindi, 2003; Munyaradzi & Mohamed-Katerere, 2006; 
Weyl et al., 2020). However, the outcomes of these 
introductions were often opposite of the intended purpose, 
with losses of ecosystem function and services (B. W. van 
Wilgen et al., 2020). For example, in South Africa the overall 
rate of alien freshwater animal introductions accelerated 
sharply after 1880 and generally increased over time, with 
unintentional introductions of invertebrates playing a relevant 
role (Weyl et al., 2020). Only freshwater fish introductions 
underwent a significant decrease after the 1950s due 
to legislation regulating introductions and decreasing 
demand for new species for angling (Faulkner et al., 2020). 
In general, the number of invertebrate introductions to 
South Africa rose over time (Faulkner et al., 2016), this 
pattern being reported for freshwater (Weyl et al., 2020), 
terrestrial (Janion-Scheepers & Griffiths, 2020), and marine 
invertebrate introductions (T. B. Robinson et al., 2020).

Status 

In light of Africa’s colonial history, there have been 
surprisingly fewer introductions of alien mammals than 
to other regions (Long, 2003). Africa currently harbours 
44 established alien mammals from seven orders and 18 
families (Biancolini et al., 2021). The most represented 
orders are Cetartiodactyla (17 species), Primates (9), 
Rodentia (7), and Carnivora (6). These alien species are 
mainly concentrated along the western Mediterranean 
coast, South Africa, and Madagascar and originate 
from within Africa (16), Europe and Central Asia (8), the 
Americas (8), and Asia and the Pacific (1). The pathways 
most frequently involved in alien mammal establishment 
were hunting (15 cases), the pet trade (10), farming (8), 
and conservation (8) (Biancolini et al., 2021). Escaped 
game species are a growing problem in South Africa 
where numerous game-farming estates specialize in alien 
mammals (D. Spear & Chown, 2009; B. W. van Wilgen et 
al., 2020). The status of these species is often classified as 
“within country” instead of alien as they are native to the 
geopolitical unit of South Africa. Nevertheless, they have 
been translocated outside of their historical native range 
(B. W. van Wilgen et al., 2020). For example, Tragelaphus 
angasii (nyala), an antelope native to Africa, is now spreading 
outside its native range and possibly competing with native 
herbivores (Biancolini et al., 2021; Downs & Coates, 2005). 
Of the 44 established alien mammal species, 27 (61.4 per 
cent) have ecological impacts (Biancolini et al., 2021). For 
example, Suncus murinus (Asian house shrew), one of the 
“100 of the worst invasive alien species,” has a patchy 
distribution from Madagascar to Egypt, and potentially has 
overlooked impacts on native plants, invertebrates, and 
small vertebrates through predation or competition (GISD, 
2019). However, some alien mammal introductions were 

considered benign and carried out for conservation, such as 
for four primates threatened by habitat loss and translocated 
from their native mainland range to insular protected areas: 
Daubentonia madagascariensis (aye-aye), Eulemur albifrons 
(white-headed lemur), Varecia variegata (black-and-white 
ruffed lemur), and Piliocolobus kirkii (Zanzibar red colobus) 
(Andriaholinirina, Baden, Blanco, Chikhi, Cooke, et al., 2014; 
Andriaholinirina, Baden, Blanco, Chikhi, Zaramody, et al., 
2014a, 2014b; Biancolini et al., 2021; Davenport et al., 
2019). 

Most alien bird species in Africa are found in the far south 
of the continent, although Corvus splendens (house crow) 
is distributed from Sudan to South Africa along the east 
coast. Most alien species are a legacy of Africa’s European 
colonial past, such as Fringilla coelebs (chaffinch) and 
Sturnus vulgaris (common starling) in South Africa. Other 
notable alien birds in Africa are Acridotheres tristis (common 
myna) and Passer domesticus (house sparrow) (E. E. Dyer, 
Redding, et al., 2017).

The number of alien reptile introductions in Southern Africa 
has risen in recent decades, but there is limited information 
about the trends elsewhere in this IPBES region (Capinha et 
al., 2017; Kraus, 2009; Seebens, Blackburn, et al., 2017; 
Van Wilgen et al., 2010). For amphibians, many species 
have been translocated within Southern Africa (Measey et 
al., 2017).

In contrast to most other taxa, the highest numbers of alien 
fishes and crustaceans – many marine – are found in North 
Africa (Table 2 .19). East Africa and its adjacent islands have 
the second highest numbers of alien fishes likely because 
of introductions in the many lakes of the Rift Valley area, 
including the three largest, Lakes Victoria, Tanganyika, and 
Malawi, that have high alien fish population densities and 
associated fisheries important for subsistence (Pitcher & 
Hart, 1995). In these lakes and large artificial reservoirs, 
Lates niloticus (Nile perch), Limnothrissa miodon (Tanganyika 
sardine), and tilapias are the main introduced fish species 
(Craig, 1992; Pitcher & Hart, 1995). Tilapias are tropical 
fishes in the family Cichlidae (mainly Oreochromis, Tilapia, 
and Sarotherodon spp.) that are native to parts of Africa and 
the Middle East but have been introduced globally mostly 
for aquaculture and human consumption (Canonico et al., 
2005). A total of 21 alien freshwater fishes have established 
in South Africa, and others have been translocated (Ellender 
& Weyl, 2014; Weyl et al., 2020). The high number of alien 
fishes in Southern Africa is likely influenced by greater 
research efforts compared to other African regions. No 
alien marine fish have been reported for South Africa yet (T. 
B. Robinson et al., 2020). Many freshwater fish have been 
intentionally introduced across Africa in order to maintain or 
increase fishery yields, enhance sport fisheries, or support 
the aquaculture industry (Darwall et al., 2011; Ellender & 
Weyl, 2014; García et al., 2010; Máiz-Tomé et al., 2018). 
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By 2011, sixteen alien fish species had been introduced 
to Central Africa (Brooks et al., 2011). In Madagascar, one 
quarter of the freshwater fish fauna consists of alien species, 
with 26 alien species present, of which at least 24 were 
deliberately introduced during the 1950s (Šimková et al., 
2019). On Île de la Réunion, six species of fish (and one 
decapod crustacean, Macrobrachium rosenbergii (giant 
freshwater prawn)) were introduced by 2002, but only four 
were established by then (Keith, 2002).

Notably, no review on introductions of freshwater alien 
species in Africa has been produced so far except for 
crayfish (Madzivanzira et al., 2021). In other cases, current 
information is available only for specific taxa and has been 
only comprehensively and recently assessed for South Africa 
(M. P. Hill et al., 2020; Weyl et al., 2020; Zengeya & Wilson, 
2020). Available data show that South Africa hosts 51 alien 
freshwater invertebrates and 32 alien freshwater fish, while 
926 alien plant species are reported, and freshwater and 
terrestrial species are not distinguished (Zengeya & Wilson, 
2020). Seventy-seven alien freshwater animals, largely 
dominated by fishes, molluscs, and crustaceans, are currently 
established in South Africa, most of which were intentionally 
introduced (Picker & Griffiths, 2017; Weyl et al., 2020).

Among alien freshwater jellyfish, the cnidarian 
Craspedacusta sowerbii (peach blossom jellyfish) has been 
recorded in South Africa and potentially Morocco (Oualid 
et al., 2019; Weyl et al., 2020). Several species of alien 
molluscs have been recorded in African freshwaters, with 
14 species of gastropods reported by 2011, some of which 
were released for the biological control of the intermediate 
hosts of schistosomiasis (Appleton, 2003; Appleton & 
Brackenbury, 1998). Only one alien freshwater bivalve 
Corbicula fluminea (Asian clam) has been recorded in African 
waters, an introduction probably related to fish stocking 
(Clavero et al., 2012; Darwall et al., 2011). Nine species 
of alien crayfish have been introduced to Africa, mostly for 
aquaculture. Five have established populations in the wild 
and three have spread widely in specific parts of Africa: 
Procambarus clarkii (red swamp crayfish) in Eastern Africa, 
Cherax quadricarinatus (redclaw crayfish) in Southern Africa, 
and Procambarus virginalis (Marmorkrebs) in Madagascar 
(Madzivanzira et al., 2021). 

Little is known about marine alien species in Africa. The 
most studied areas are along the South African coast which 
includes two large marine ecosystems, the Agulhas current 
in the east and the Benguela current in the west (Mead et 
al., 2011; T. B. Robinson et al., 2020). The total number of 
introduced marine species reported is 95, with 59 per cent 
considered as invasive alien species. A variety of taxa are 
represented, from the small protists (e.g., Mirofolliculina 
limnoriae) and dinoflagellates (e.g., Alexandrium minutum) 
to the most conspicuous macroalgae, molluscs, 
crustaceans, bryozoans, and tunicates. Most biological 

invasions were reported along the Benguela current large 
marine ecosystem (70 per cent) and alien species inhabit 
bays, estuaries, and artificial habitats, while only three 
are widespread and abundant on open rocky shores (the 
mussels Mytilus galloprovincialis (Mediterranean mussel) 
and Semimytilus patagonicus, and the barnacle Balanus 
glandula) (T. B. Robinson et al., 2020). Angola harbours 29 
introduced marine species, mostly concentrated in Luanda, 
the most studied area of the country (Pestana et al., 2017). 
The most conspicuous and abundant taxa are bryozoans 
and tunicates, such as Schizoporella errata (branching 
bryozoan) and Ascidiella aspersa (European sea squirt), both 
global invasive alien species.

2.4.2.2 Plants

Trends

The number of established alien plant species in Africa has 
continually increased for centuries as reported for multiple 
African countries (Brundu & Camarda, 2013; L. Henderson, 
2006; Maroyi, 2012; Senan et al., 2012; Shaltout et al., 
2016). Southern Africa has experienced a steady increase 
in plant alien species numbers during the entire twentieth 
century, the most rapid rise of all African regions, and 
appeared to slow down only towards the end of the century 
(Figure 2 .30). In contrast, alien plant numbers in East Africa 
showed a marked acceleration starting in the final quarter 
of the twentieth century and have not yet slowed. In North 
Africa, alien plant numbers increased slowly but steadily 
towards the end of the nineteenth century. No readily 
apparent dynamics were detected for West Africa. However, 
this detected pattern is, to some extent, likely due to more 
intensive research and better data collected for the Republic 
of South Africa relative to the rest of the continent (Pyšek et 
al., 2008; Pyšek, Pergl, van Kleunen, et al., 2020).

Status

Southern Africa has the highest established alien species 
richness for all taxa (1,139) among all the subregions of 
Africa (Table 2 .19). Seven other countries harbour over 300 
established alien plant species: Congo (522), Ethiopia (421), 
Morocco (410), Mozambique (396), Benin (333), Algeria 
(328), and Eswatini (315) (D. M. Richardson et al., 2020). 
Expressed as the proportional contribution of established 
alien species to the national flora, countries that rank highest 
in this respect are Chad (12 per cent), Benin (11 per cent), 
and Eswatini (10 per cent); in South Africa, because of its 
extremely rich native flora, the contribution of established 
alien species to the total floristic richness of the country is 
only 5 per cent. South Africa also has the highest number 
of invasive alien species (374, D. M. Richardson et al., 
2020). Bidens pilosa (blackjack, occurring in 61 per cent 
of all African regions as defined by GloNAF corresponding 
mostly to countries), Ricinus communis (castor bean, 60 per 
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cent), Senna occidentalis (coffee senna, 60 per cent), 
Catharanthus roseus (Madagascar periwinkle, 56 per cent), 
and Euphorbia hirta (garden spurge, 54 per cent) occur 
in more than half of the regions in Southern Africa. The 
following are the most widely distributed invasive alien plants 
in Southern Africa: Lantana camara (lantana, invasive in 46 
per cent of regions), Tithonia diversifolia (Mexican sunflower), 
Pontederia crassipes (water hyacinth), Chromolaena odorata 
(Siam weed), Leucaena leucocephala (leucaena), Prosopis 
juliflora (mesquite, all invasive in more than 20 per cent of 
regions), and Parthenium hysterophorus (parthenium weed) 
(D. M. Richardson et al., 2020). Concerning the donor 
regions of established alien plant species in Africa, the 
highest numbers were introduced from temperate Asia (19 
per cent of all introductions to individual countries), Europe 
(13.9 per cent), tropical Asia (13.7 per cent), Southern 
America (13.4 per cent), and Northern America (10.9 per 
cent). However, 21 per cent of species that are established 
in African countries were introduced from another country 
on that same continent (van Kleunen et al., 2015).

Alien tree species have had the greatest impact throughout 
Africa on biodiversity, water regimes, fire regimes, and 

ecosystem functioning (D. M. Richardson et al., 2021). Many 
tree species used in forestry and agroforestry, especially 
Eucalyptus and Pinus (Pine), have been introduced 
throughout Africa, and some shrubs and trees such 
as Acacia colei (parta), Acacia melanoxylon (Australian 
blackwood), Broussonetia papyrifera (paper mulberry), 
Calliandra houstoniana (calliandra), Calotropis gigantea 
(yercum fibre), Dahlia imperialis (bell tree dahlia), Ipomoea 
carnea (pink morning glory), Montanoa hibiscifolia (tree 
daisy), and Tecoma stans (yellow bells) are well established 
in many parts of the continent (D. M. Richardson et al., 
2021). However, relative to Pinus and Acacia, Eucalyptus 
appears to have had a lower impact. South Africa’s 
Mediterranean shrublands have been severely invaded by 
numerous alien trees and shrubs, especially species in the 
genera Acacia, Hakea, Leptospermum and Pinus (B. W. van 
Wilgen et al., 2016). Australian Acacia species are actively 
promoted for agroforestry in other parts of the continent 
(D. M. Richardson et al., 2004) and higher-lying areas have 
been heavily invaded by Acacia melanoxylon and Acacia 
mearnsii (black wattle), Pinus patula (Mexican weeping 
pine) and Pinus radiata (radiata pine). Pines and acacias 
are extremely invasive in the mountains of southwestern 

Table 2  20   Numbers of established alien species for subregions of Africa . 

For mammals, birds, and vascular plants ranges of values indicate variation among databases (section 2 .1 .4 for further details about 
data sources and data processing). Note numbers presented may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this table is available at https://doi .org/10 .5281/zenodo .7615582

Central Africa
East Africa 

and adjacent 
islands

North Africa
Southern 

Africa
West Africa Total

Mammals 4-17 17-35 5-17 9-54 1-9 30-80

Birds 13-16 77-79 17-20 71-74 14-23 121-133

Fishes 26 56 130 46 17 187

Reptiles 2 33 8 124 9 158

Amphibians 0 5 2 2 5 12

Insects 33 143 71 227 48 344

Arachnids 9 29 10 70 11 94

Molluscs 2 11 75 67 7 142

Crustaceans 1 11 82 47 3 125

Vascular plants 880-1,071 1,738-2,570 485-1,162 1,754-2,292 645-818 3,109-4,498

Algae 3 4 42 12 1 58

Bryophytes 0 0 0 0 0 0

Fungi 19 44 18 82 9 122

Oomycetes 0 1 0 3 0 4

Bacteria and protozoans 1 2 1 2 1 4

Total 1,045-1,252 2,274-3,126 1,115-1,807 2,773-3,359 802-992 4,510-5,961

https://doi.org/10.5281/zenodo.7615582
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South Africa and in riparian habitats and other biomes 
(Holmes et al., 2005). Other tree and shrub invaders with 
impacts include Acacia dealbata (acacia bernier), Acacia 
decurrens (green wattle), several Rubus (bramble) species, 
and Biancaea decapetala (Mysore thorn). Azadirachta indica 
(neem tree), Prosopis juliflora (mesquite), and Leucaena 
leucocephala (leucaena) are abundant invaders along 

the coastline of much of Africa, preferring hot and humid 
conditions. Chromolaena odorata (Siam weed) is now 
common in many countries in Central and Southern Africa, 
being abundant in open savanna grasslands, woodlands, 
riparian zones, forest gaps, and edges (D. M. Richardson 
et al., 2021). Table 2 .20 lists the most widespread invasive 
alien species in Africa according to GRIIS.

Table 2  21   Top most widespread invasive alien species for Africa .

The number of regions where the respective species has been recorded and classified as being invasive based on GRIIS (Pagad et al., 
2022). Note this table only refers to the distribution of invasive alien species rather than their impacts, which is covered in Chapter 4. 
A maximum of three species is shown for each group (see section 2 .1 .4 for further details about data sources and data processing). 
A data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species name No . of regions Species name No . of regions

Mammals Molluscs

Rattus rattus (black rat) 7 Lissachatina fulica (giant African land snail) 4

Mus musculus (house mouse) 6 Pseudosuccinea columella (mimic lymnaea) 3

Felis catus (cat) 5 Bursatella leachii (blue-spotted sea hare) 2

Birds Crustaceans

Corvus splendens (house crow) 9 Penaeus monodon (giant tiger prawn) 4

Acridotheres tristis (common myna) 4 Cherax quadricarinatus (redclaw crayfish) 3

Passer domesticus (house sparrow) 3 Percnon gibbesi (nimble spray crab) 2

Fishes Vascular plants

Poecilia reticulata (guppy) 9 Lantana camara (lantana) 31

Gambusia holbrooki (eastern mosquitofish) 7 Pontederia crassipes (water hyacinth) 30

Oreochromis niloticus (Nile tilapia) 6 Chromolaena odorata (Siam weed) 23

Reptiles Algae

Trachemys scripta elegans (red-eared slider) 3 Caulerpa cylindracea (green algae) 2

Hemidactylus frenatus (common house gecko) 2 Alexandrium tamarense (dinoflagellate) 1

Gehyra mutilata (mutilating gecko) 1 Caulerpa chemnitzia (green algae) 1

Amphibians Bryophytes

Rhinella marina (cane toad) 2

Duttaphrynus melanostictus (Asian common toad) 1 Fungi

Insects Ceratocystis fimbriata (Ceratocystis blight) 1

Icerya purchasi (cottony cushion scale) 11 Cryphonectria parasitica (blight of chestnut) 1

Bactrocera cucurbitae (melon fly) 9 Pseudocercospora fijiensis (black Sigatoka) 1

Bactrocera dorsalis (Oriental fruit fly) 9 Oomycetes

 Arachnids

Mononychellus tanajoa (cassava green mite) 1 Bacteria and protozoans

Rhipicephalus microplus (cattle tick) 1 Vibrio cholerae (cholera) 9

Yersinia pestis (black death) 1

https://doi.org/10.5281/zenodo.7615582
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By 2006, a total of 27 major invasive alien aquatic plants 
had been recorded in African waters, 16 alien to Africa, 
and 11 native to other parts of the continent (Howard 
& Chege, 2007). A recent review records the existence 
of 19 established alien freshwater plants only in South 
Africa, mainly introduced through trade and hitchhiking via 
boating and angling (M. P. Hill et al., 2020). In South Africa, 
the most important invasive alien freshwater macrophyte 
remains Pontederia crassipes (water hyacinth), first 
recorded as established in KwaZulu-Natal in 1910. Four 
other species are also highly invasive, collectively referred 
to along with water hyacinth as the “Big Bad Five”: Pistia 
stratiotes (water lettuce), Salvinia × molesta (kariba weed), 
Myriophyllum aquaticum (parrot’s feather), and Azolla 
filiculoides (water fern) (M. P. Hill et al., 2020; Chapter 4, 
section 4 .3 .2 .2). 

2.4.2.3 Microorganisms 

In general, microbial biological invasions are more readily 
detected in well-surveyed regions, such as Europe, than 
in less well-surveyed regions, such as Africa, highlighting 
the importance of monitoring programmes at continental 
and inter-continental scale (Waage et al., 2008). Fungi, 
oomycetes, and other microorganisms are poorly studied in 
most areas of the African continent. While Africa has been 
a source for several plant, animal, and human diseases 
(Bryant et al., 2007; Costard et al., 2009; Pretorius et al., 
2010), reports of biological invasions across most of Africa 
have declined over the years, except for South Africa 
(Zengeya et al., 2020), most likely due to a lack of resources 
dedicated to this research. Thus, reliable data are scarce 
and mostly limited to a few well-researched regions, such as 
the Cape region (Crous et al., 2006) where the introduction 
and impact of alien fungal species are best documented 
(Wood, 2017). In South Africa, nine alien pathogenic species 
are known to attack native plants, while 23 host-specific 
pathogens of alien plant species have likely been introduced 
together with their hosts (Wood, 2017). In addition, one fish 
pathogen, 11 alien saprotrophic species, and 61 species 
of alien fungi forming ectomycorrhizae have been reported 
(Wood, 2017). Furthermore, seven host-specific alien 
pathogens have been introduced for the biological control of 
invasive alien species (Wood, 2017). 

Compared to other IPBES regions, Africa has the lowest 
number of known alien macrofungi, with 107 species 
(Monteiro et al., 2020). Of these, 40 per cent belong to 
Agaricales, 29 per cent to Boletales and 13 per cent 
to Russulales. The most widespread macrofungi are 
Pyrrhoderma noxium, Amanita muscaria (fly agaric), 
Pisolithus albus (white dye-ball fungus), Rhizopogon 
luteolus (yellow false truffle), and Suillus granulatus 
(weeping bolete mushroom), having been recorded for 8 or 
more countries. The highest numbers of alien macrofungi 
are reported for South Africa (65), Tanzania (25), Morocco 

(10), and Kenya (10). A number of countries, mainly from 
the Central African region, have between 1 to 5 known 
alien species.

2.4.2.4 Islands

Invasive alien species on islands are a major concern in 
the western Indian Ocean islands, including Comoros, 
Mauritius, Seychelles, Île de la Réunion, and smaller nearby 
islands where mammal predators such as cats and rats 
and plants negatively affect the increasingly disturbed 
ecosystems (Bonnaud et al., 2011; Kueffer et al., 2004; 
Russell et al., 2016; Russell & Le Corre, 2009; Tassin 
& Laizé, 2015). Île de la Réunion is estimated to have 
over 2,000 alien plant species, with more than 100 of 
these classified as invasive (e.g., Leucaena leucocephala 
(leucaena), Hiptage benghalensis (hiptage), Ulex europaeus 
(gorse, Baret et al., 2006; Soubeyran et al., 2015). Of the 
28 island groups, including 68 archipelagos present in the 
Western Indian Ocean, alien mammals can be found on 
each group with an average richness of five species per 
island group (Russell et al., 2016). There are 12 invasive 
alien mammal species on Île de la Réunion and various 
combinations of six of them on the nearby Îles Éparses 
(Russell & Le Corre, 2009). The islands of East Africa 
are major hubs of alien reptiles and amphibians globally: 
Mauritius and Île de la Réunion are inhabited by 17 and 15 
alien species, respectively (Capinha et al., 2017; Kraus, 
2009; Telford et al., 2019). On Socotra, 88 alien plants have 
been recorded (Senan et al., 2012). The recent invasion 
of Madagascar by Duttaphrynus melanostictus (Asian 
common toad) and some alien marine biota poses a severe 
threat to the native biodiversity of this island (Licata et al., 
2019; B. M. Marshall et al., 2018). Similarly, the islands off 
the Western coast of Africa have repeatedly experienced 
animal invasions. In São Tomé and Principe, invasions 
began in the 1470s and by the end of the twentieth century, 
14 alien mammal species were established on São Tomé 
and 12 on Principe (Dutton, 1994). Currently, 25 alien 
and invasive alien animal species are reported for both 
islands, of that 5 are birds, 2 ray-finned fish, 13 mammals, 
4 insects, and 1 gastropod (De Menezes & Pagad, 2020). 
In Cabo Verde harbour there are 448 introduced plant taxa, 
equivalent to 60 per cent of the native flora, according to 
the Cabo Verde Biodiversity Database (Medina et al., 2015). 
In addition, there are 38 alien and invasive alien animal 
species, including 4 ray-finned fishes, 2 gastropods and 
2 marine invertebrates, 4 reptile species, 6 bird species, 
10 mammal species, and 9 insect species (Martinez et 
al., 2021).

2.4.2.5 Data and knowledge gaps

Although impacts of invasive alien species on Africa’s 
biodiversity and ecosystem services are well known, 
there are still large gaps in scientific information (Egoh et 
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al., 2020; Faulkner et al., 2015). With the exception of 
South Africa (B. W. van Wilgen et al., 2020), these gaps 
are apparent in many subregions, particularly in East 
Africa and adjacent islands, both for units of analysis and 
many taxonomic groups. The number of documented 
alien species in many countries may be significantly 
underestimated as this is a function of information 
availability, research intensity, and country development 
status (McGeoch et al., 2010). 

For alien mammals, gaps exist for most of the African 
continent except for areas such as the western 
Mediterranean coast, South Africa, Madagascar, and 
adjacent islands. Knowledge of alien amphibians and 
reptiles is incomplete due to a lack of data (Capinha et al., 
2017; García-Díaz et al., 2015; Kraus, 2009; Seebens, 
Blackburn, et al., 2017; N. J. van Wilgen et al., 2018). These 
gaps broadly match the distribution of data-deficient native 
reptile and amphibian species, which suggests a general 
scarcity of information about the status of reptiles and 
amphibians in the region (Böhm et al., 2013; Stuart et al., 
2008). Further survey efforts in these data-poor areas can 
be expected to uncover established populations of alien 
amphibians and reptiles.

One of the main data gaps regarding freshwater invasions 
in Africa relates to the understanding of their geographical 
scope, given that most comprehensive reviews have 
been produced for South Africa only. A large taxonomic 
bias was also found, with reviews on faunal invasions, 
particularly fish invasions, or on specific species such as 
the highly invasive Pontederia crassipes (water hyacinth), 
dominating the literature, and many fewer studies on other 
taxonomic groups (Coetzee et al., 2019). Thus, the status 
of alien and invasive alien species presented here certainly 
underestimates the true number of freshwater invasive alien 
species present in the region. Increased research could help 
to better inform the trends and status of freshwater invasive 
alien species in Africa.

For vascular plants, Africa is geographically covered 
completely by the GloNAF database (Pyšek, Pergl, et al., 
2017; van Kleunen et al., 2015, 2019), providing data on 
alien plant species in individual countries, but of varying 
quality (Pyšek, Pergl, et al., 2017) so that information 
remains scarce in some regions.

Information on the occurrence of alien fungi is missing for 
many African countries, mainly in North Africa, East Africa, 
and adjacent islands. The most complete information is 
available for South Africa, but even here knowledge is 
considered incomplete (Wood, 2017). The low number 
of alien macrofungi reported in most countries is likely a 
consequence of low research intensity and numbers are 
certainly underestimated.

2.4.3 Trends and status of alien 
and invasive alien species in the 
Americas

This section reports on the trends and status of alien 
species of the Americas (Figure 2 .31, Table 2 .21) for 
animals (section 2 .4 .3 .1), plants (section 2 .4 .3 .2), 
microorganisms (section 2 .4 .3 .3), and islands (section 
2 .4 .3 .4), and provides an overview of data and knowledge 
gaps (section 2 .4 .3 .5). A description of IPBES regions and 
sub-regions including a spatial representation is provided 
online (IPBES Technical Support Unit On Knowledge And 
Data, 2021) and in Chapter 1, section 1 .6 .4.

2.4.3.1 Animals

Trends

The number of alien animals in the Americas has increased 
across all taxonomic groups, especially post-1850, and 
across all subregions (Figure 2 .31). Particularly steep 
increases are observed for North America, followed by 
South America, with the exception of alien birds which also 
showed steep increases in the Caribbean. Since 1900 the 
rates of increase have remained stable (e.g., mammals), 
declining (fishes in North America), or distinctly increasing 
(arthropods). Increases in numbers of alien arthropods in 
North America have been shown in several studies (Aukema 
et al., 2010; Mattson et al., 1994; Nealis et al., 2016) as well 
as in South America (Fuentes et al., 2020), for freshwater 
(Ricciardi, 2001, 2006) and for marine animals (Carlton & 
Eldredge, 2009; Cohen & Carlton, 1998; Ruiz, Fofonoff, et 
al., 2000). Transfers of species within a continent contribute 
to the spread and new incidences of alien species 
occurrences. Within the United States, for example, over 
580 freshwater species have been introduced from one 
watershed to another outside their historical ranges; these 
introductions are nearly as numerous as those originating 
from outside the country, and they have increased over time, 
more than doubling in number since 1950 (USGS, 2021).

Alien mammal introductions in the Americas date to pre-
Columbian times in the Caribbean islands for hunting (e.g., 
Didelphis marsupialis (common opossum), Dasyprocta 
leporina (agouti), Dasypus novemcinctus (nine-banded 
armadillo)) (Biancolini et al., 2021; Giovas et al., 2012; 
Long, 2003). European colonialism caused a surge in 
introductions of alien species beginning in the fifteenth 
century and peaking during the twentieth century, with a 
strong focus on game species and, more recently, on pets 
(Biancolini et al., 2021; Long, 2003).Considered collectively, 
the number of alien amphibians and reptiles in the Americas 
has been increasing since the 1950s and the introduction 
of new alien species through the pet trade is predicted 
to either accelerate or remain steady (Kraus, 2009; 
Lockwood et al., 2019; Perella & Behm, 2020; Powell et 
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al., 2011; Seebens, Blackburn, et al., 2017; Stringham & 
Lockwood, 2018).

The first introductions of alien aquatic species in South 
America occurred in the 1500s in conjunction with European 
colonization, but remained relatively low until the1800s 
and 1900s, when they moderately increased. Alien aquatic 
introductions began increasing distinctly in the mid 1900s, 
both in South and North America, as shown in Figure 3 .6 
in the IPBES Regional Assessment Report on Biodiversity 
and Ecosystem Services for the Americas (IPBES, 2018b). 
Through the 2000s there has been a large increase in the 
number of records and studies of alien organisms (e.g., 
Frehse et al., 2016; Vitule et al., 2021). Current data trends 
show no signs of slowing, either in terms of the number 
of alien species or in new spatiotemporal records (e.g., 
Vitule et al., 2021). Aquaculture and the aquarium trade 
(including e-commerce) are the most important pathways 
for the introduction of new alien species (e.g., Bezerra et al., 

2019; Magalhães et al., 2020; Vitule et al., 2019). Habitat 
alteration, the elimination of biogeographic barriers (e.g., D. 
A. dos Santos et al., 2019; Vitule et al., 2012), ballast water, 
hull fouling (Frehse et al., 2016), and introducing fish for 
angling are other important mechanisms for introduction that 
have direct effects on both biodiversity and socio-economic 
aspects (e.g., Doria et al., 2020; Vitule et al., 2014). 

For marine alien species in American waters, seminal 
studies have highlighted the rising numbers of marine 
alien species (Cohen & Carlton, 1998; Coles et al., 1999). 
Recent updates for regions such as for the coastal waters 
of the American temperate zones found an increase in 
the total number of detected alien species, while the rate 
of newly recorded alien species has remained stable in 
recent decades (Bailey et al., 2020). Teixeira & Creed (2020) 
reported that the number of introduced species increased 
by 160 per cent for Brazil between 2009 and 2019. A rise 
in the number of detected alien species was also found for 
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Figure 2  31  Trends in numbers of established alien species for the Americas . 

The cumulative numbers (left panels) and number of established alien species per five-year intervals (right panels). Numbers shown 
here underestimate the real extent of alien species occurrences due to a lack of data. Lines in right panels indicate smoothed trends 
calculated as running medians (section 2 .1 .4 for further details about data sources and data processing). Note numbers presented 
may deviate from those reported in the text due to variation among data sources. A data management report for the data underlying 
this figure is available at https://doi.org/10.5281/zenodo.7615582
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Argentina and Uruguay (Schwindt et al., 2020), where the 
number of detections increased by a factor of 4.5 between 
2001 and 2019, with an estimated arrival of one new 
species every 178 days.

Status

The Americas host a significant number of established 
alien mammals (96 species) from nine orders and 29 
families. Most are from the orders Cetartiodactyla (30 
species), Rodentia (28 species), Primates (14 species) 
and Carnivora (11 species) (Biancolini et al., 2021). Within 
the Americas, alien mammal richness is high on the east 
coast of North America, Alaskan islands, Newfoundland 
Island, central-southern United States, the Caribbean 
Archipelago, and Patagonia (Malvinas) (Biancolini et al., 
2021). Many mammals native to the Americas have been 
translocated inside the region and are thus classified as 
being alien (53 species), while the major outside donors 
were Europe and Central Asia (8 species), followed by Asia 
and the Pacific (7 species) and Africa (2 species). Alien 
mammal introductions mainly occurred for sport hunting, 
the pet trade, so called “faunal improvement” (e.g., releases 
carried out to aesthetically modify the landscape), farming, 
and zoos (Biancolini et al., 2021). A well-established 
hunting industry in North America fuels the introduction of 
ungulates, frequently contained in large enclosures in the 
southern United States and Mexico or directly released 
into the wild (Long, 2003). For example, Ammotragus lervia 
(aoudad), a bovid native to the Northern African savanna 
and desert areas, is now established in a large range north 
of Mexico (establishment not reported for Mexico) (Texas 
Invasive Species Institute, 2021). One of the most invasive 
alien mammals in the Americas is Herpestes javanicus 
auropunctatus (small Indian mongoose) established on 
many islands in the Caribbean (Biancolini et al., 2021; 
Hays & Conant, 2007; Louppe et al., 2020). This species 
was widely introduced during the nineteenth century as a 
biological control agent for rodents, and it is considered 
one of the “100 worst invasive alien species in the world” 
because of its generalist diet and high predatory efficiency. 
Another high-profile example of mammal invasion is the 
ongoing spread of Hippopotamus amphibius (so-called 
“Escobar’s hippos”; hippopotamus) in the Magdalena River 
of Colombia (Biancolini et al., 2021; Jarić et al., 2020). Four 
individuals of this large African mammal were introduced by 
Pablo Escobar in the 1980s for his amusement and they 
escaped captivity in 1993 after his death (Dembitzer, 2017); 
in 2020, about 80–120 alien hippos were found to occur 
over 2000 km2. 

Alien bird species are particularly rich in North America, 
notably Florida and California, where several alien parrot 
species have established populations (E. E. Dyer, Cassey, 
et al., 2017). Alien parrots are also widespread in South 
America. Attempts to establish all the bird species 

mentioned in Shakespeare’s works into North America have 
a legacy in the distribution of Sturnus vulgaris (common 
starling) across the continents. 

In South America, the number of reported alien aquatic 
organisms (ranging from microscopic fungi, invertebrates, 
and plants to large mammals (Schwindt et al., 2018) is 
increasing rapidly (e.g., Fuentes et al., 2020; Vitule et al., 
2021), with fish and molluscs (26.8 per cent and 25.2 per 
cent of studied invasive alien marine species respectively; 
see Schwindt & Bortolus, 2017, Figure 2 .31) having the 
largest number of studies, species, and spatiotemporal 
occurrence records (e.g., (Bezerra et al., 2019; Frehse et 
al., 2016; Vitule et al., 2021). The most recent records of 
fishes in South America indicate that over 75 alien species 
have been translocated between different basins within 
South America (Bezerra et al., 2019; Vitule et al., 2019) and 
more than 80 alien fish species have been introduced from 
other regions of the world (Doria et al., 2021; Vitule et al., 
2019, 2021). Most of the alien aquatic species studied in 
South America belong to the salmonid and cichlid families, 
but Limnoperna fortunei (golden mussel) is the alien species 
included in the most publications within the region (Schwindt 
& Bortolus, 2017).

North America has a long and very well-studied history 
of aquatic species introductions, particularly for fish (e.g., 
Courtenay & Meffe, 1989; Fuller et al., 1999; Moyle, 
1986). Introductions of European and Asian species that 
have also been introduced worldwide are noteworthy, 
such as Salmo trutta (brown trout) or Cyprinus carpio 
(common carp), species of tropical or subtropical origin 
introduced to Florida, and species from elsewhere in the 
United States introduced to California, and more recently 
Cyprinus carpio in the Mississippi Basin. The Laurentian 
Great Lakes have many invasive alien animals of Ponto-
Caspian origin (Box 2 .9), mostly introduced through ballast 
water (Ricciardi & MacIsaac, 2000; Vanderploeg et al., 
2002). Pterois species (lionfishes) have spread through 
the western Atlantic, including parts of North America and 
the Caribbean. The introduction of Oreochromis niloticus 
(Nile tilapia), Salmo trutta, Cyprinus carpio, and many other 
fish species is widespread throughout the Americas (e.g., 
Agostinho et al., 2005; Contreras-Balderas et al., 2008; 
Habit et al., 2010, 2015). Similarly, many species native to 
small parts of the American continent (e.g., Gambusia spp. 
(Gambusias), Oncorhynchus mykiss (rainbow trout), Poecilia 
reticulata (guppy)) have been widely introduced throughout 
the Americas and elsewhere (Marr et al., 2013). 

The Americas is the IPBES region with the highest number 
of alien reptiles and amphibians (Table 2 .22). Within this 
region, the United States is home to several hotspots 
of alien amphibians and reptiles (Capinha et al., 2017; 
Kraus, 2009; Krysko et al., 2011, 2016). Florida (58 
species established), California (25 species), and Puerto 
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Rico (11 species) stand out as global hotspots of alien 
amphibians and reptiles (Capinha et al., 2017; Kraus, 
2009; Krysko et al., 2011, 2016; Meshaka, 2011; Perella 
& Behm, 2020; Powell et al., 2011). Besides Puerto Rico, 
other Caribbean islands such as Cuba and the Bahamas are 
also important global hotspots (Borroto-Páez et al., 2015; 
Capinha et al., 2017; C. R. Knapp et al., 2011; Kraus, 2009; 
Powell et al., 2011). In South America, Brazil is the country 
with the highest number of alien amphibians and reptiles, 
with a total of 136 species recorded, of which at least seven 
have established wild populations (Capinha et al., 2017; É. 
Fonseca et al., 2019; Kraus, 2009).

Marine alien species across the Americas are unequally 
studied geographically and taxonomically, and compilations 
are scarce over time and space. Comprehensive 
assessments are lacking even in well-studied regions, such 
as the United States, making it difficult to draw general 
conclusions (Bailey et al., 2020). The first comprehensive 
assessment was made for the United States for continental 
coasts finding 298 marine alien species (Ruiz, Fofonoff, et 
al., 2000). However, this assessment needs updating, that 

is, as of 2006 there are 257 introduced species in California 
alone (Ruiz et al., 2011). The reports in the rest of North 
America and mesoamerica are spatially or taxonomically 
focused and no comprehensive compilations have been 
published. The Southwestern Atlantic is the best-known 
region in South America for marine invasive alien species, 
yet, unequally studied among countries and sub-regions 
(Schwindt & Bortolus, 2017). Brazil has the highest number 
of marine alien species with 138 species (Teixeira & Creed, 
2020), followed by Argentina and Uruguay with 129 species 
(Schwindt et al., 2020). On the Pacific coast, Chile reported 
51 alien species (Castilla & Neill, 2009; Villaseñor-Parada et 
al., 2017), and Colombia 4 (Gracia et al., 2011), but this may 
be due to lack of research (Schwindt & Bortolus, 2017).

2.4.3.2 Plants

Trends

Over the last two centuries the cumulative rate of increase 
in established alien plant species was most rapid in North 
America, quickly accelerating at the end of the nineteenth 

Table 2  22   Numbers of established alien species for subregions of the Americas . 

Numbers of alien species can vary depending on data sources. For mammals, birds and vascular plants, ranges of values indicate 
variation among databases (section 2 .1 .4 for further details about data sources and data processing). Note presented numbers may 
deviate from those reported in the text due to variation among data sources. A data management report for the data underlying this 
table is available at https://doi .org/10 .5281/zenodo .7615582

Caribbean Mesoamerica North America South America Total

Mammals 35-62 8-34 49-95 25-77 83-164

Birds 110-113 29-41 210-211 53-114 249-287

Fishes 91 226 619 144 803

Reptiles 60 60 121 56 192

Amphibians 20 8 41 16 62

Insects 153 163 2,116 640 2,636

Arachnids 33 36 168 76 207

Molluscs 26 60 212 68 255

Crustaceans 10 64 173 79 248

Vascular plants 1,402-1,761 1,600-2,242 6,571-7,424 2,492-3,099 8,005-9,325

Algae 4 105 65 50 193

Bryophytes 0 0 34 21 48

Fungi 17 15 174 219 363

Oomycetes 2 2 7 5 12

Bacteria and protozoans 1 4 6 5 14

Total 2,036-2,425 2,612-3,292 11,587-12,487 4,353-5,073 13,370-14,809

https://doi.org/10.5281/zenodo.7615582
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century (Figure 2 .31; Lavoie et al., 2012; Pyšek et al., 
2019). South America exhibited a slower cumulative 
increase, likely due to fewer experts and lower research 
intensity when compared to North America (Frehse et 

al., 2016; Schwindt et al., 2020; Schwindt & Bortolus, 
2017).(Fuentes et al., 2008; Rojas-Sandoval & Acevedo-
Rodríguez, 2015; Ugarte et al., 2010). Numbers of alien 
plant species are expected to increase over the next 

Table 2  23   Top most widespread invasive alien species for the Americas .

The number of regions where the species has been recorded and classified as being invasive based on GRIIS (Pagad et al., 2022). 
Note this table only refers to the distributions of invasive alien species rather than their impacts which are covered in Chapter 4. A 
maximum of three species is shown for each group (see section 2 .1 .4 for further details about data sources and data processing). 
“No. of regions” denotes the number of regions with confirmed occurrences of that species according to the chapter database. A 
data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species name No . of regions Species name No . of regions

Mammals Molluscs

Rattus rattus (black rat) 21 Lissachatina fulica (giant African land snail) 12

Mus musculus (house mouse) 19 Melanoides tuberculata (red-rimmed melania) 9

Rattus norvegicus (brown rat) 19 Corbicula fluminea (Asian clam) 8

Birds Crustaceans

Passer domesticus (house sparrow) 11 Macrobrachium rosenbergii (giant freshwater 
prawn)

6

Columba livia (pigeons) 10 Cherax quadricarinatus (redclaw crayfish) 5

Bubulcus ibis (cattle egret) 5 Carcinus maenas (European shore crab) 2

Fishes Vascular plants

Cyprinus carpio (common carp) 9 Calotropis procera (apple of sodom) 13

Oreochromis niloticus (Nile tilapia) 9 Leucaena leucocephala (leucaena) 13

Oncorhynchus mykiss (rainbow trout) 8 Ricinus communis (castor bean) 13

Reptiles Algae

Hemidactylus mabouia (tropical house gecko) 7 Undaria pinnatifida (Asian kelp) 4

Hemidactylus frenatus (common house gecko) 6 Codium fragile (dead man’s fingers) 2

Anolis sagrei (brown anole) 4 Didymosphenia geminata (didymo) 2

Amphibians Bryophytes

Lithobates catesbeianus (American bullfrog) 11 Campylopus introflexus (heath star moss) 1

Rhinella marina (cane toad) 6 Fungi

Xenopus laevis (African clawed frog) 4 Batrachochytrium dendrobatidis (chytrid fungus) 6

Insects Amanita phalloides (death cap) 1

Icerya purchasi (cottony cushion scale) 11 Bipolaris maydis (southern corn leaf blight) 1

Maconellicoccus hirsutus (pink hibiscus 
mealybug)

11 Oomycetes

Aedes albopictus (Asian tiger mosquito) 10 Phytophthora cinnamomi (Phytophthora dieback) 1

 Arachnids Phytophthora lateralis (Port-Orford-cedar root 
disease)

1

Raoiella indica (red palm mite) 7 Phytophthora ramorum (sudden oak death) 1

Aceria litchii (Litchi gall mite) 1 Bacteria and protozoans

Avicularia avicularia (tarantula spiders) 1 Vibrio cholerae (cholera) 5

Yersinia pestis (black death) 2

https://doi.org/10.5281/zenodo.7615582
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20 years in emerging South American economies such 
as Brazil, Mexico, and Argentina based on global trade 
dynamics and climate change (Seebens et al., 2015) which 
could reverse the current status of North America as more 
invaded by plants than South America (Pyšek et al., 2019).

Status

With 5,958 established alien vascular plant species, North 
America has the highest recorded alien plant richness in the 
world (Pyšek, Pergl, et al., 2017; van Kleunen et al., 2015). 
South America harbours 2,667 established alien plants 
(Pyšek et al., 2019); note that the numbers differ from those 
presented in Table 2 .21, because of different data sources 
and deviating data integration steps (section 2 .1 .4 for 
further details). In the United States, California is the world’s 
richest region in terms of established alien vascular plants 
with 1,753 established alien plant species, and Florida is a 
world regional hotspot with 1,473 established alien plants 
(Kartesz, 2014). Sonchus oleraceus (common sowthistle), 
Plantago major (broad-leaved plantain), Taraxacum officinale 
(dandelion), and Poa annua (annual meadowgrass) are 
among the most widely distributed established species 
in North America (each in more than 85 regions), while 
for South America the analogous list includes Eleusine 
indica (goose grass), Sonchus oleraceus, Plantago major, 
Polygonum aviculare (prostrate knotweed), and Brassica 
rapa (field mustard) (Pyšek, Pergl, et al., 2017; Table 
2 .23). According to Pyšek, Pergl, et al. (2017), countries in 
Mesoamerica also harbour many established alien plants 
(Nicaragua 671, Mexico 519, Costa Rica 280, Panama 263), 
but due to their high native diversity, alien plants make up 
only 2.0–2.8 per cent of the total floras, the exception being 
Nicaragua with 10.4 per cent (e.g., Correa A. et al., 2004; 
Pyšek, Pergl, et al., 2017; Chacón & Saborío, 2012). Some 
regions in the Caribbean are heavily invaded by established 
alien plants, both in terms of actual species numbers 
(Cuba 542, Bahamas 356) or the proportion of established 
alien plants in the national floras (Bahamas 24 per cent, 
Barbados 14 per cent). Other countries in the Caribbean 
harbour 20 to 110 established alien plant species and their 
contributions to national floras do not exceed 8 per cent 
(Acevedo-Rodríguez & Strong, 2008; Kartesz, 2014; Pyšek, 
Pergl, et al., 2017). 

2.4.3.3 Microorganisms 

Trends 

The introduction of microorganisms has a long history in 
the Americas but is poorly documented as is the case 
worldwide. Where available, studies on the trends in alien 
microorganisms usually cover only fungi. For example, first 
records of alien fungi in Chile have been documented from 
the early twentieth century and show a continuous increase 
in numbers until the present (Fuentes et al., 2020).

Status 

The Americas harbour at least 199 alien macrofungi 
species, with approximately 36 per cent belonging to 
the group Agaricales, 32 per cent to Boletales and 11 
per cent to Russulales (Monteiro et al., 2020). Species 
most widely distributed within the region are Suillus luteus 
(ectomycorrhizal fungus of pine), Amanita muscaria (fly 
agaric), Rhizopogon roseolus (ectomycorrhizal fungus), 
and Suillus granulatus (weeping bolete mushroom). 
Countries with high numbers of known established species 
occur mainly in South America, and include Brazil (75), 
Argentina (60), and Chile (40) (Monteiro et al., 2020). In the 
remaining IPBES sub-regions, higher numbers of known 
alien macrofungi were found in the United States (including 
Hawaii) (50), Canada, and Mexico (7 each).

2.4.3.4 Islands

Alien and invasive alien species are widespread on islands 
of both sides of the Americas: in the Pacific Ocean (notably 
the Galapagos islands) and the Atlantic Ocean (notably the 
Caribbean islands; e.g., (Kairo et al., 2003; Rojas-Sandoval 
& Acevedo-Rodríguez, 2015; Van der Burg et al., 2012). 
As an example, Caribbean Island forests are extensively 
dominated by alien tree species (Brandeis et al., 2009; 
Chinea & Helmer, 2003; Helmer et al., 2012), some of 
which are shade-tolerant and could permanently change 
forest species composition (C. J. Brown et al., 2006). In 
addition, several alien species grow in forest plantations, 
livestock pastures, and abandoned agricultural fields 
creating both economic and environmental impacts. Such 
is the case for Dichrostachys cinerea (sickle bush), an alien 
species that occurs across almost 800,000 hectares in 
Cuba (Hernández et al., 2002). The Hawaiian Islands are 
a global hotspot of plant invasions with 1,488 total alien 
plant species, and numbers for individual islands within 
the archipelago ranging from 386 to 913 alien species 
(Imada, 2012).

On the other side of the Americas, the Galapagos 
Archipelago harbours an estimated 1700 alien species with 
Capra sp. (goat) and Rubus niveus (Mysore raspberry) being 
among the most common until recently (Toral-Granda et 
al., 2017). Between the 1980s and 1990s, the number of 
introduced plants has nearly doubled on the Galapagos 
Islands, reaching nearly 900 species (De Lourdes Torres 
& Mena, 2018). In addition, a study of the residence 
time and human-mediated propagule pressure of plants 
suggested that this archipelago is still in an early stage of 
plant invasions, due to the booming tourism industry and 
increasing human population size (Trueman et al., 2010). 

2.4.3.5 Data and knowledge gaps 

Data availability for the Americas is dominated by studies 
from North America. Across taxonomic groups, the 
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Caribbean, Mesoamerica, and South America have 
considerably less data available relative to North America 
(Pyšek et al., 2008). Studies on the temporal accumulation 
of alien species are almost exclusively available for this 
region except for a few studies for islands in the Caribbean 
and South America (Fuentes et al., 2008; Rojas-Sandoval 
& Acevedo-Rodríguez, 2015; Toral-Granda et al., 2017). 
Only a few studies on temporal trends exist for mainland 
South America or Mesoamerica (e.g., Fuentes et al., 2020). 
Temporal information is scarce for most taxonomic groups 
in North America, including well-investigated groups such 
as vascular plants, birds, and mammals. For some groups, 
that are generally less studied globally, such as many 
invertebrates, fungi, and microorganisms, information is 
lacking for vast areas of this region. 

In South America, regions often considered pristine and 
less impacted, such as the Amazon basin, lack studies 
on alien species and could be more thoroughly explored, 
particularly given recent levels of deforestation which could 
facilitate biological invasions (e.g., Frehse et al., 2016; Vitule 
et al., 2021; Chapter 3, section 3 .3 .1). In addition, there is 
a high degree of uncertainty on the status of alien species 
or populations and due to uncertainties about the native 
range of many species, the challenge of cryptic invasive 
alien species may be even greater for South America than 
the rest of the world (Bortolus et al., 2015; Essl et al., 2018; 
Jarić et al., 2019). 

A notable exception represents alien amphibians and 
reptiles which are relatively well-known in most of the 
Americas as a consequence of ongoing surveys and 
research (Capinha et al., 2017; É. Fonseca et al., 2019; 
García-Díaz et al., 2015; González-Sánchez et al., 2021; 
Kraus, 2009; Krysko et al., 2016; Perella & Behm, 2020; N. 
J. van Wilgen et al., 2018). Nevertheless, clarification of the 
status (i.e., being alien or native to a certain region) of some 
species in Mesoamerica and South America is needed 
(García-Díaz et al., 2015; González-Sánchez et al., 2021), 
and further work will improve the understanding of the 
ecology and impacts of the alien amphibians and reptiles 
present in this region (É. Fonseca et al., 2019; N. J. van 
Wilgen et al., 2018).

An important data gap exists for countries along the North 
Atlantic coast of South America (from French Guiana 
to Guiana; Schwindt & Bortolus, 2017). For example, in 
Venezuela the number of marine alien species originally 
reported by Pérez et al. (2007) was 22 but was later lowered 
to 11 alien species by Figueroa López and Brante (2020) 
due to uncertainty in the provided records. However, the 
number of marine alien species is likely higher even than 
the number reported by Pérez et al. (2007). No extensive 
compilations of alien species in general are available for 
continental Ecuador and for Peru (but see Calder et al., 
2021; Cárdenas-Calle et al., 2019).

The availability of records on alien macrofungi for the 
Americas is dominated by a few countries, notably those 
for which higher numbers of alien species are reported 
here, including Argentina, Brazil, Chile and the United 
States. Important data gaps on established alien species 
exist for many other countries of the Americas, particularly 
in the Caribbean and Mesoamerica (Monteiro et al., 
2020). In general, information about alien microorganisms 
is lacking for all of the Americas as is the case for other 
IPBES regions.

2.4.4 Trends and status of alien 
and invasive alien species in Asia 
and the Pacific

This section reports on the trends and status of alien 
species of Asia and the Pacific for animals (section 2 .4 .4 .1), 
plants (section 2 .4 .4 .2), microorganisms (section 2 .4 .4 .3), 
and islands (section 2 .4 .4 .4), and provides an overview of 
data and knowledge gaps (section 2 .4 .4 .5). A description 
of IPBES regions and sub-regions including a spatial 
representation is provided online (IPBES Technical Support 
Unit On Knowledge And Data, 2021) and in Chapter 1, 
section 1 .6 .4.

2.4.4.1  Animals

Trends

The numbers of alien animal species increased continuously 
for all taxonomic groups and all subregions of the Asia-
Pacific regions (Figure 2 .32). The steepest increases were 
observed in Oceania for all animal groups considered in 
Figure 2 .32, except for fishes. In Oceania, the number 
of alien animals rose distinctly already in the nineteenth 
century, much earlier relative to other subregions where 
steep increases were mostly observed after 1950. 
Northeast Asia experienced strong increases during that 
time for birds, fishes, and crustaceans. Likewise, increasing 
alien species numbers have been reported in various 
countries for insects (Huang et al., 2011; Yamanaka et 
al., 2015), gastropods (Barker, 1999; Roll et al., 2009), 
amphibians and reptiles (Lee et al., 2019), and marine alien 
species of different groups (Bailey et al., 2020; Hewitt et 
al., 2004).

Before colonization by Europeans, alien mammals in South-
East Asia were introduced via ancient exchanges between 
the Indonesian Archipelago, Papua New Guinea, and 
Australia with numerous prehistoric introductions of game, 
fur, pet, and stowaway species (e.g., Phalanger orientalis 
(northern common cuscus), Sus celebensis (Sulawesi 
pig), Dendrolagus matschiei (Matschie’s tree-kangaroo)) 
(Biancolini et al., 2021; Heinsohn, 2003; Long, 2003). 
Introductions surged during the nineteenth century following 
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European colonization when Australia, New Zealand, and 
other Pacific islands became hotspots for alien mammals 
that negatively impacted native animal communities 
(Biancolini et al., 2021; Woinarski et al., 2015). The aim was 
to supply game species (e.g., Cervus elaphus (red deer), 
Lepus europaeus (European hare), Dama dama (fallow deer)) 
or create a familiar environment for colonists. In Central 
Asia and North-East Asia, alien mammal introductions were 
largely carried out at the beginning of the nineteenth century 
to create hunting and furbearing populations (Biancolini 
et al., 2021; Clout & Russell, 2008; Long, 2003). Native 
Australian species became the subject of conservation 
introductions, also called assisted colonization, to offshore 
islands free of invasive alien mammals (Seddon et al., 2015; 
Woinarski et al., 2015).

The Asia-Pacific region has experienced a growing number 
of alien bird, reptile and amphibian introductions, a trend 
likely to continue in the future (Chapple et al., 2016; Kraus, 
2009; Lee et al., 2019; Pili et al., 2020; Seebens, Bacher, 

et al., 2021; Seebens, Blackburn, et al., 2017; Toomes et 
al., 2020).

The number of alien freshwater species grew slowly in Asia 
and the Pacific until the nineteenth century (Figure 2 .32) 
when the number of recorded alien freshwater species 
distinctly increased (H. H. Tan et al., 2020; Yuma et al., 
1998). During the twentieth century, aquaculture was the 
main pathway for freshwater fish species introductions 
(Saba et al., 2020; Xiong et al., 2015) and in the beginning 
of the late twentieth century, many freshwater fish species 
were introduced for ornamental purposes (H. H. Tan et 
al., 2020; Yuma et al., 1998). The number of ornamental 
freshwater fish rapidly increased towards the end of the 
twentieth century and ornamental trade is now the main 
pathway of introduction (Goren & Ortal, 1999; Saba et al., 
2020; Yuma et al., 1998). 

As in many other regions, detected numbers of introduced 
alien marine species in the South Pacific region increased 
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Figure 2  32  Trends in numbers of established alien species for Asia and the Pacific . 

Cumulative numbers (left panels) and number of established alien species per five-year intervals (right panels). Numbers shown here 
underestimate the actual extent of alien species occurrences due to a lack of data. Lines in right panels indicate smoothed trends 
calculated as running medians (section 2 .1 .4 for further details about data sources and data processing). Note numbers presented 
may deviate from those reported in the text due to variation among data sources. A data management report for the data underlying 
this figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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over time. The first assessment for New Zealand 
documented 129 alien species (Cranfield et al., 1998), 
while the most recent assessment nearly doubled that 
number to 214 (Therriault et al., 2021), with 15 alien species 
considered as new arrivals establishing between 2010 
and 2018. Despite these numbers, recent work shows 
an apparent decline in primary detections since 2005 in 
several regions across Asia and the Pacific. It is unknown 
if this decline is a result of effective preventive strategies 
(Chapter 5, section 5 .5 .1) or a reduction in search effort 
(Bailey et al., 2020). In Asia, alien species introductions 
occur mainly by unintentional translocations such as ballast 
water discharged in ports located across China’s coast (Y. 
Chen et al., 2017).

Status 

Asia and the Pacific is the region with the highest number 
of established alien mammals in the world (130 species), 
from 12 orders and 34 families (Biancolini et al., 2021). 
The majority are from the orders Cetartiodactyla (30), 
Diprotodontia (28), Rodentia (26) and Carnivora (21). 
Areas with high numbers of alien mammals are Japan, the 
Indonesian archipelago, Australia, New Zealand, and the 
Pacific islands. These alien species originate mainly from 
within the region itself (96), while 14 alien species originate 
from Europe and Central Asia, 13 from the Americas, and 10 
from Africa. Major pathways of alien mammal introductions 
in Asia and the Pacific are hunting (48 alien species), 
conservation (28), pet trade (27), faunal improvement (27), 
farming (22), stowaway transportation (16), and biocontrol 
(12) (Biancolini et al., 2021). During the nineteenth century 
acclimatization societies sought to “improve” local fauna 
by introducing many aesthetically pleasing and/or game 
species to Australia and New Zealand (Biancolini et al., 
2021; Simberloff & Rejmanek, 2011). Of the 130 established 
alien mammal species, 68 (52 per cent) have invasive alien 
populations (Biancolini et al., 2021). Examples include the 
prolific generalist Oryctolagus cuniculus (rabbits), a well 
known invasive alien species in Australia (Kirkpatric et al., 
2008), and the generalist Trichosurus vulpecula (brushtail 
possum), which was introduced to New Zealand in 1858 for 
domestic fur and meat trade (Forsyth et al., 2018; Gormley 
et al., 2012).

Despite Asia and the Pacific having a larger area and more 
suitable habitats than Europe and Central Asia, the Asia-
Pacific region harbours similar numbers of alien amphibians 
and reptiles as Europe and Central Asia (Table 2 .18). This 
pattern may possibly be a result of stringent biosecurity 
measures (Chapter 5, section 5 .6 .3 .3) in some areas 
such as Australia, New Zealand, and Japan, (Brenton-
Rule et al., 2016; Chapple et al., 2016; García-Díaz et 
al., 2017; Toomes et al., 2020), but also lower relative 
research intensity in other regions (Figure 2 .6). Despite the 
comparatively low alien species richness, the Asia-Pacific 

region harbours two of the best-known examples of alien 
reptiles and amphibians, namely Boiga irregularis (brown 
tree snake) in Guam and Rhinella marina (cane toad) in 
Australia and other Pacific islands (Engeman et al., 2018; 
Lever, 2003; Rogers et al., 2017; Shine, 2018; Zug, 2013). 
The notable invasive alien species Lithobates catesbeianus 
(American bullfrog), Trachemys scripta (pond slider), and 
Eleutherodactylus planirostris (greenhouse frog) have been 
reported in China (S. Lin et al., 2017; X. Liu et al., 2015; 
Shi et al., 2009). Additionally, Japan (17 alien species), the 
Cook Islands (14 alien species), and island territories such 
as Taiwan, Province of China, (at least 12 alien species) and 
Guam, United States (11 alien species) are global hotspots 
of alien amphibians and reptiles (Capinha et al., 2017; 
Kraus, 2009; Lee et al., 2019; Zug, 2013). 

In Asia, the number of introduced alien freshwater species 
is highest for China (439) (Xiong et al., 2015), followed by 
Malaysia (203 freshwater fishes) (Saba et al., 2020) and the 
Philippines (159 freshwater fishes) (Casal et al., 2007). The 
number of established alien freshwater fishes is highest in 
China (61) (Luo et al., 2019), followed by Singapore (42) (H. 
H. Tan et al., 2020), the Philippines (39) (Casal et al., 2007), 
and Japan (23) (Yuma et al., 1998). Most of the established 
alien fishes were introduced for aquaculture (Casal et al., 
2007; Luo et al., 2019), while the proportion of introduced 
ornamental fishes is much lower (Casal et al., 2007; Luo et 
al., 2019).

A regional assessment of marine alien species across Asia 
and the Pacific is lacking, and, as in many other marine 
regions, records are likely underestimated. Lutaenko et al. 
(2013) compiled an atlas of marine invasive alien species 
in the Northwest Pacific Region, which includes territories 
from Japan, the Republic of Korea, the Russian Federation 
and China (Yellow Sea). For Japan, 42 marine alien species 
were reported (Iwasaki, 2006), mostly concentrated in 
eutrophicated enclosed bays near large urban cities such 
as Tokyo Bay and Osaka Bay. Although ballast water and 
hull fouling are important vectors, 21 species were reported 
as intentionally introduced for commercial sales, live bait, or 
fishery studies (Lutaenko et al., 2013). Partial updates were 
done by Doi et al. (2011) adding crustaceans (mainly crabs, 
amphipods, barnacles, and isopods) to the list of alien 
species reported by Iwasaki (2006), increasing the 42 by 10 
reported alien species. There are few reports about marine 
species introductions to Korean and Chinese waters. Seo 
and Lee (2009) reported 136 species suspected to be alien 
across this vast region of Asia, while 41 alien species are 
recognized only for the Republic of Korea (Lutaenko et al., 
2013). As for the Russian waters of the Northwest Pacific 
region, 37 marine invasive alien species were reported by 
2010 and this number increased to 66 in a later assessment 
(Zvyagintsev et al., 2011), mostly concentrated around Peter 
the Great Bay in Russia. Two recent reports for the north 
Pacific document 73 alien species for the northern central 
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Indo-Pacific, 208 species for the northwest Pacific (includes 
northeast Asia), and 368 for the northeast Pacific (from the 
United States, Canada up to Alaska; Kestrup et al., 2015; 
Lee II & Reusser, 2012). In conclusion, the vast region 
of the north Pacific has a similar number of introduced 
marine species as the Mediterranean Sea. In addition, the 
northwest Pacific contains the largest number of alien fishes 
(34 species), most intentionally released into the wild or 
maintained in aquaculture facilities. 

There are few exhaustive assessments for the south Pacific 
Ocean with the greatest research efforts in Australia and 
New Zealand. Surveysof Port Phillip Bay (Australia) detected 
100 marine alien species (Hewitt et al., 2004). A subsequent 
thorough literature reviewthat included data from port 
surveys yielded 132 alien species (Sliwa et al., 2008). As of 
March 2018 in New Zealand, 214 established alien species 
were reported (Therriault et al., 2018). The knowledge of 
marine bioinvasions of the Pacific Island Countries and 
Territories is scattered and dispersed in diverse publications. 
Surveys in Pago Pago Harbor (American Samoa) recognized 
17 marine alien species (Coles et al., 2003), 40 alien species 

were detected from Guam (Paulay et al., 2002), and 11 alien 
species in Malakal harbour, Palau (M. L. Campbell et al., 
2016). Most alien species were associated with transport 
in ballast water or biofouling (Hewitt & Campbell, 2010), 
and the number of intentional introductions for aquaculture 
purposes are low in Australia and New Zealand but high 
across the Pacific Islands countries (Eldredge, 1994). 
Many introduction attempts have been conducted in the 
past 50 years in the south Pacific Ocean, with at least 
38 alien species originating from small scale fisheries or 
aquaculture activities.

2.4.4.2 Plants

Trends

First records of alien plant species in Asia and the Pacific 
date back more than 1000 years (Wijesundara, 2010), 
and continual increases in the number of established alien 
species have been consistently recorded for several Asian 
and Pacific countries (Banerjee, 2020; C. Chen et al., 2017; 
Jaryan et al., 2013; Lazkov & Sultanova, 2011; Shrestha, 

Table 2  24   Numbers of established alien species for subregions of Asia and the Pacific . 

Numbers of established alien species can vary depending on data sources. For mammals, birds, and vascular plants ranges of values 
indicate variation among databases (see section 2 .1 .4 for further details on data sources and data processing). Note numbers may 
deviate from those reported in the text due to variation among data sources. A data management report for the data underlying this 
table is available at https://doi.org/10.5281/zenodo.7615582

North-East 
Asia

Oceania South Asia
South-East 

Asia
Western Asia Total

Mammals 28-53 50-105 12-28 38-54 5-20 97-163

Birds 119-129 169-175 29-38 84-85 84-139 287-336

Fishes 287 95 90 296 125 633

Reptiles 41 41 7 35 13 103

Amphibians 24 13 4 12 1 43

Insects 607 1,521 111 89 101 2,017

Arachnids 67 83 13 18 6 129

Molluscs 81 119 15 24 89 261

Crustaceans 43 75 12 19 63 158

Vascular plants 2,219-2,454 4,631-6,747 1,055-3,142 1,313-1,598 271-562 6,141-9,101

Algae 55 63 8 13 47 157

Bryophytes 0 32 0 0 0 32

Fungi 59 303 17 20 1 363

Oomycetes 9 5 2 1 0 12

Bacteria and protozoans 7 4 3 2 4 12

Total 4,008-4,278 7,963-10,140 1,490-3,602 2,053-2,355 932-1,293 10,445-13,520

https://doi.org/10.5281/zenodo.7615582
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2016; Vinogradov & Kupriyanov, 2016; Wijesundara, 
2010; Wu et al., 2010). The most dramatic increase in the 
cumulative number of alien plant species is recorded for 
Oceania, including Australia, New Zealand, and the Pacific 
Islands (Figure 2 .32). Introduction rates peaked in around 

1900, followed by a decline and a re-acceleration in the 
mid-twentieth century (Figure 2 .32). The trends for other 
Asia-Pacific sub-regions are similar to that for Oceania but 
they have markedly lower absolute numbers of established 
alien species per time period.

Table 2  25   Top most widespread invasive alien species for Asia and the Pacific .

The number of regions where the species has been recorded and classified as being invasive based on GRIIS (Pagad et al., 2022). 
Note this table only refers to the distribution of invasive alien species rather than their impacts which are covered in Chapter 4. A 
maximum of three species is shown for each group (see section 2 .1 .4 for further details about data sources and data processing). 
“No. of regions” denotes the number of regions with confirmed occurrences of that species according to the chapter database. A 
data management report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species name No . of regions Species name No . of regions

Mammals Molluscs

Rattus rattus (black rat) 23 Lissachatina fulica (giant African land snail) 15

Mus musculus (house mouse) 18 Pomacea canaliculata (golden apple snail) 11

Rattus norvegicus (brown rat) 14 Euglandina rosea (rosy predator snail) 6

Birds Crustaceans

Acridotheres tristis (common myna) 16 Amphibalanus improvisus (bay barnacle) 3

Columba livia (pigeons) 7 Cherax quadricarinatus (redclaw crayfish) 3

Corvus splendens (house crow) 7 Procambarus clarkii (red swamp crayfish) 3

Fishes Vascular plants

Gambusia holbrooki (eastern mosquitofish) 16 Lantana camara (lantana) 29

Cyprinus carpio (common carp) 15 Pontederia crassipes (water hyacinth) 28

Gambusia affinis (western mosquitofish) 12 Leucaena leucocephala (leucaena) 23

Reptiles Algae

Hemidactylus frenatus (common house gecko) 4 Alexandrium minutum (dinoflagellate) 2

Iguana iguana (iguana) 4 Caulerpa taxifolia (killer algae) 1

Trachemys scripta elegans (red-eared slider) 4 Chattonella marina (raphidophyte) 1

Amphibians Bryophytes

Lithobates catesbeianus (American bullfrog) 6

Rhinella marina (cane toad) 6 Fungi

Xenopus laevis (African clawed frog) 2 Pyrrhoderma noxium 4

Insects Amanita muscaria (fly agaric) 1

Solenopsis geminata (tropical fire ant) 14 Austropuccinia psidii (myrtle rust) 1

Tapinoma melanocephalum (ghost ant) 14 Oomycetes

Brontispa longissima (coconut hispine beetle) 13 Phytophthora cinnamomi (Phytophthora dieback) 3

 Arachnids Bacteria and protozoans

Aculops lycopersici (Tomato russet mite) 1 Vibrio cholerae (cholera) 3

Latrodectus geometricus (brown widow spider) 1 Yersinia pestis (black death) 1

Latrodectus hasselti (Redback spider) 1

https://doi.org/10.5281/zenodo.7615582
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Status

The Asia-Pacific region includes several global hotspots of 
established alien plant species (Dawson et al., 2017) as for 
islands in Oceania (Essl et al., 2019; Moser et al., 2018). 
Such hotspots include New Zealand with 1,726 established 
alien plant species (comprising 44.5 per cent of the flora; 
Howell & Sawyer, 2006), Tahiti with 1,346 (73.8 per cent), 
and Guam with 833 (66.5 per cent, Raulerson, 2006). 
Australian states harbour from 1,186 established alien 
species in Western Australia to 1,584 in New South Wales, 
corresponding to 12–25 per cent of the total plant diversity 
in these states (Pyšek, Pergl, et al., 2017; Randall, 2002; 
Walsh & Stajsic, 2007). Australasia experienced a rapid 
accumulation of established alien plants during colonization, 
while the Pacific islands show the steepest increase in 
established plant species among all global regions (van 
Kleunen et al., 2015). The most widespread established 
alien species on the Pacific Islands include Euphorbia hirta 
(garden spurge), Cenchrus echinatus (southern sandbur), 
Phyllanthus amarus (jamaicaweed), Sida rhombifolia 
(arrowleaf sida), Carica papaya (papaya), Eleusine indica 
(goose grass), and Euphorbia prostrata (prostrate sandmat). 
In Australia and New Zealand,the most widespread 
established alien species are Sonchus oleraceus (common 
sowthistle), Solanum americanum (American black 
nightshade), Chenopodiastum murale (nettle-leaf goosefoot), 
Medicago polymorpha (bur clover), and Malva parviflora 
(pink cheeseweed) (Pyšek, Pergl, et al., 2017; Table 2 .25). 
Global hotspots of established alien species also occur in 
other Asian sub-regions; in South Asia and South-East Asia, 
India (471 alien plants comprise 2.6 per cent of the flora; 
Inderjit et al., 2018), the Philippines (628 species, 6.4 per 
cent; Pelser et al., 2011), and Indonesia (503 species, 1.7 
per cent; Biotrop, 2003) are invasion hotspots. In Nepal, 21 
established alien plant species have been classified as being 
invasive (Shrestha, 2016), while 101 invasive alien plant 
species have been recorded for Bhutan (Dorjee et al., 2020). 
In North-East Asia, Japan is richest in alien plants (1311 
species, 22.6 per cent) and numbers from China range 
from 100 to 400 (Pyšek, Pergl, et al., 2017). Western Asia is 
comparatively poor in numbers of alien plants (Table 2 .25; 
Pyšek, Pergl, et al., 2017).

2.4.4.3 Microorganisms

Trends 

In general, information on the trends of alien microorganisms 
in Asia is very scarce as for other IPBES regions. Data from 
China indicate that of the 27 invasive alien fungi recorded 
so far, only two new additions were reported after the year 
2000 (H. G. Xu & Qiang, 2018). In India, only one new 
invasive alien fungal pathogen (Puccinia horiana (white 
rust of chrysanthemum)) has been recorded in the last five 
years (Akhtar et al., 2019; Dubey et al., 2021). However, 
15 invasive fungal pathogens were intercepted by plant 

quarantine (Akhtar et al., 2019, 2021; Dubey et al., 2021) 
between 2015 and 2020. Only scattered information on 
trends of invasive alien fungi is available from other countries 
in Asia.

Status 

Twenty-seven invasive alien fungal pathogens were recorded 
from China (H. G. Xu & Qiang, 2018), 21 from India (Akhtar 
et al., 2019, 2021; Dubey et al., 2021; Government of 
India, 2005), 30 from the Maldives (Shafia & Saleem, 
2003), and 15 from the Lao People’s Democratic Republic 
(Nhoybouakong & Khamphouke, 2003). Further information 
on invasive alien fungi is not traceable or available from 
countries in Asia though it is clear from studies by Fisher 
et al. (2020) that several new invasive alien fungi may have 
been introduced from across the globe. 

A comparatively high number of known alien macrofungi 
has been reported for Asia and the Pacific which harbours 
at least 235 established alien species (Monteiro et al., 
2020). Most of these alien species belong to the order 
Agaricales (54 per cent), followed by Boletales (21 per 
cent), and Russulales (10 per cent). The most widespread 
alien macrofungi is Pyrrhoderma noxium. The countries 
with the highest numbers of known alien macrofungi are 
New Zealand (170 species) and Australia (40 species). 
This highlights the paucity of knowledge on invasive alien 
microparasites in this region. In general, it is assumed 
that goods, species including humans constantly carry a 
multitude of microorganisms around the globe and that 
many of them are introduced every year without detection.

2.4.4.4 Islands 

Many islands in the Asia-Pacific region are significantly 
impacted by invasive alien species (IPBES, 2018b). For 
example, French Polynesia has undergone severe invasions 
by species ranging from avian malaria, plants, mammals, 
ants, birds, and predatory land snails (Brodie et al., 2014; 
Howarth, 1985; J.-Y. Meyer, 2014; J.-Y. Meyer & Butaud, 
2009). Mammals are widely introduced on islands in Asia 
and the Pacific (Courchamp et al., 2003), with examples 
including commensal rodents (mice, black rats, brown 
rats, and Pacific rats), rabbits, pigs, goats, cats, and foxes, 
in particular on many islands (D. J. Campbell & Atkinson, 
2002; Priddel et al., 2000; Reaser et al., 2007; St Clair, 
2011; Towns et al., 2006). 

Conversely, while some islands are invaded by only a 
few alien species, they are archetypal examples of island 
invasions. Invasive Herpestes sp. (mongooses) have been 
introduced on the Japanese islands of Amami-Oshima 
and Okinawa (Goldson, 2011; Reaser et al., 2007; The 
Ministry of the Environment of Japan, 2014). On Guam, 
Boiga irregularis (brown tree snake) has spread widely 
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reaching densities in excess of 31,000 individuals per 
km2 (CGAPS, 1997; Fritts & Rodda, 1998; Rogers et al., 
2017). On Guam and on Christmas Island, Anoplolepis 
gracilipes (yellow crazy ant) invasions were boosted by 
the invasive Tachardiaephagus tachardiae (yellow lac 
scale insect), which supplies yellow ants with honeydew 
(O’Dowd et al., 2003; Reaser et al., 2007). Other typical 
examples are gastropod invasions on many Polynesian 
islands, such as Lissachatina fulica (giant African land snail; 
Tsatsia & Jackson, 2022). Invasive plants are also a serious 
issue on many Asia-Pacific islands, such as Tahiti (J.-Y. 
Meyer & Florence, 1996), Lord Howe Island (T. D. Auld & 
Hutton, 2004), and Carnac Island (Abbott et al., 2000), 
while invasive soilborne plant pathogens, such as the 
fungus Phytophthora cinnamomi (Phytophthora dieback), 
are problematic in over 70 countries including several 
Australian islands (T. D. Auld & Hutton, 2004; Pickering 
et al., 2007), Fiji, Samoa, Tuvalu, and New Zealand (e.g., 
F. Campbell, 2010; Thaman, 2011; Thaman & O’Brien, 
2011). Hawaii is another classic example of an archipelago 
heavily invaded by many species groups, being among 
the three regions with the most established alien species 
in the world (Dawson et al., 2017): over 1,000 plants (W. 
L. Wagner et al., 1999), 3,000 arthropods (Nishida, 2002), 
and 110 vertebrates (Moulton & Pimm, 1983; Vitousek et 
al., 1987).

Pacific Islands are widely invaded by alien birds with New 
Zealand being a global hotspot of alien bird richness. More 
than 130 species were introduced to New Zealand, mostly 
deliberately by acclimatization societies set up by British 
colonists. More than 30 species are now established, 
including dense populations of several passerine species 
imported from Britain, such as Turdus philomelos (song 
thrush), Turdus merula (Eurasian blackbird), Prunella 
modularis (dunnock), Chloris sp. (greenfinch), Acanthis sp. 
(redpoll) and Emberiza citrinella (yellowhammer). 

2.4.4.5 Knowledge and data gaps 

For alien plants, Asia and the Pacific have lower data 
coverage than other continents; data are available on 
established alien species for 68.5 per cent of the area 
of tropical Asia as a whole (Pyšek, Pergl, et al., 2017; 
van Kleunen et al., 2015). Notable exceptions represent 
some well-studied invasion hotspots such as Australia, 
New Zealand and Hawaii (van Kleunen et al., 2015, 2019; 
Figure 2 .6). Mainland Asia is a region especially affected 
by knowledge gaps for alien mammals, likely due to a 
low sampling effort (Pyšek et al., 2008) and/or linguistic 
barriers (Angulo et al., 2021). Notably, while reports of alien 
mammals in Hong Kong, Special Administrative Region of 
China, are numerous and exhaustive, very little information 
is available in English for mainland China (Biancolini et al., 
2021). However, the situation has improved recently with 
several specialized accounts published or underway (Dorjee 

et al., 2020; Inderjit et al., 2018; Patzelt et al., 2022), and 
this trend is expected to continue. Temporal information 
such as first records is generally scarce for most regions in 
Asia and the Pacific.

The completeness of the information about alien amphibians 
and reptiles and freshwater species in Asia and the Pacific 
varies substantially by country. While some countries in 
North-East Asia and Oceania are relatively well-studied, 
others, particularly in southeast Asia and western Asia, have 
substantial knowledge gaps (Capinha et al., 2017; Chapple 
et al., 2016; C. Chen et al., 2017; Cogălniceanu et al., 
2014; Das, 2015; Kraus, 2009; Lee et al., 2019; Rights and 
Resources Initiative, 2015; Seebens, Blackburn, et al., 2017; 
Soorae et al., 2010; Van Wilgen et al., 2010; Zug, 2013). 
In addition, further genetic work is needed to resolve the 
status of various species and populations of alien reptiles 
throughout the Pacific and western Asia (Cogălniceanu et 
al., 2014; Zug, 2013).

The total number of marine alien species varies among 
studies, in part due to a lack of standardized terminology, 
sampling methods, environments studied, and taxonomic 
expertise available to assess species lists and record dates 
(Marchini et al., 2015). For example, many species counted 
as marine alien species in the northwest Pacific are present 
in aquaculture facilities, while it remains unknown whether 
they have established in some cases. Some assessment 
lists only include species detected on vectors, some others 
consider different delineations of marine regions, while yet 
others are country specific. 

Asia and the Pacific is grossly under-explored for alien 
fungi and other microorganisms. The high number of alien 
macrofungal records in New Zealand and Australia are 
likely influenced by high research and sampling intensities 
in these regions. Much less data and fewer studies on alien 
macrofungi are available for most other countries in Asia and 
the Pacific. 

2.4.5 Trends and status of alien 
and invasive alien species in 
Europe and Central Asia

This section reports on the trends and status of alien 
species of Europe and Central Asia for animals (section 
2 .4 .5 .1), plants (section 2 .4 .5 .2), microorganisms (section 
2 .4 .5 .3) and islands (section 2 .4 .5 .4), and provides an 
overview of data and knowledge gaps (section 2 .4 .5 .5). A 
description of IPBES regions and sub-regions including a 
spatial representation is provided online (IPBES Technical 
Support Unit On Knowledge And Data, 2021) and in 
Chapter 1, section 1 .6 .4.
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2.4.5.1 Animals

Trends

The number of alien animal species in Europe and Central 
Asia has increased across various taxonomic groups 
including vertebrates (Rabitsch & Nehring, 2017), insects 
(Roques et al., 2016), molluscs (Peltanová et al., 2012) and 
freshwater species (Muñoz-Mas & García-Berthou, 2020; 
Nunes et al., 2015). Comparisons of long-term trends among 
sub-regions show much larger numbers of alien species 
recorded for Central and Western Europe, which has the 
highest numbers of alien species for all animal groups and 
at all times, compared to other sub-regions (Figure 2 .33). 
While rates of increase remained relatively constant over the 
last 200 years for alien mammals, they rose sharply in recent 
decades for birds and invertebrates. Rates of increase of 
alien species remained relatively constant for all groups in 
Eastern Europe, but available numbers in Central Asia are 
often too low to assess trends (Figure 2 .33).

Alien mammal introductions first occurred in Europe and 
Central Asia during prehistoric times, with major introductions 
from Asia to Europe and from the mainland to islands 
(Biancolini et al., 2021; Long, 2003). The spread of agriculture 
brought domestic species (e.g., Capra hircus (goats), Ovis 
aries (sheep), Felis catus (cat)), while island colonization 
by humans brought game species (e.g., Lepus europaeus 
(European hare), Glis glis (European edible dormouse), 
Oryctolagus cuniculus (rabbits)) as well as stowaways 
(Apodemus sylvaticus (long-tailed field mouse), Crocidura 
suaveolens (lesser white-toothed shrew), Microtus arvalis 
(common vole)) (Biancolini et al., 2021; Long, 2003). Biological 
invasions of islands intensified with the growth of the sea 
trade in the following centuries causing the disappearance 
of many natural island ecosystems, especially in the 
Mediterranean basin (Masseti, 2009). Hunting has always 
been and continues to be a major pathway for alien mammals 
and birds on both the mainland and the islands of Europe and 
Central Asia (Genovesi et al., 2012; Monaco et al., 2016).
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Figure 2  33  Trends in numbers of established alien species in Europe and Central Asia . 

Cumulative numbers (left panels) and number of established alien species per five-year intervals (right panels). Numbers underestimate 
the actual extent of alien species occurrences due to a lack of data. Lines in right panels indicate smoothed trends calculated as 
running medians (section 2 .1 .4 for further details about data sources and data processing). Note that presented numbers may 
deviate from those reported in the text due to variation among data sources. A data management report for the data underlying this 
figure is available at https://doi.org/10.5281/zenodo.7615582

https://doi.org/10.5281/zenodo.7615582
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The number of alien animal species in Europe and Central 
Asia has increased across various taxonomic groups 
including vertebrates (Rabitsch & Nehring, 2017), insects 
(Roques et al., 2016), molluscs (Peltanová et al., 2012) 
and freshwater species (Muñoz-Mas & García-Berthou, 
2020; Nunes et al., 2015). Comparisons of long-term 
trends among sub-regions show much larger numbers 
of established alien species recorded for Central and 
Western Europe, the highest species numbers for all animal 
groups and at all times, compared to other sub-regions 
(Figure 2 .33). While rates of increase remained relatively 
constant over the last 200 years for alien mammals, they 
rose sharply in recent decades for birds and invertebrates. 
Rates of increase of established alien species remained 
relatively constant for all groups in Eastern Europe, but 
available numbers in Central Asia are often too low to 
assess trends (Figure 2 .33).

Alien mammal introductions first occurred in Europe 
and Central Asia during prehistoric times, with major 
introductions from Asia to Europe and from the mainland 
to islands (Biancolini et al., 2021; Long, 2003). The spread 
of agriculture brought domestic species (e.g., Capra hircus 
(goats), Ovis aries (sheep), Felis catus (cat)), while island 
colonization by humans brought game species (e.g., Lepus 
europaeus (European hare), Glis glis (European edible 
dormouse), Oryctolagus cuniculus (rabbits)) as well as 
stowaways (Apodemus sylvaticus (long-tailed field mouse), 
Crocidura suaveolens (lesser white-toothed shrew), Microtus 
arvalis (common vole)) (Biancolini et al., 2021; Long, 
2003). Biological invasions of islands intensified with the 
growth of the sea trade in the following centuries causing 
the disappearance of many natural island ecosystems, 
especially in the Mediterranean basin (Masseti, 2009). 
Hunting has always been and continues to be a major 
pathway for alien mammals and birds on both the mainland 
and the islands of Europe and Central Asia (Genovesi et al., 
2012; Monaco et al., 2016).

Europe and Central Asia has experienced a growing 
number of alien reptile and amphibian introductions, a 
trend that will likely continue (Seebens, Bacher, et al., 2021; 
Seebens, Blackburn, et al., 2017). Trends in alien reptiles 
and amphibians follow a similar pattern: historical events 
and trade routes around the Mediterranean Basin have 
resulted in some of the oldest known introductions of alien 
amphibians and reptiles in the world occurring in this region 
(Mateo et al., 2011; Pleguezuelos, 2002). In line with global 
trends, the number of alien amphibians and reptiles has 
increased in this region and the pet trade is expected to 
contribute more species in the near and medium futures 
(Capinha et al., 2017; Filz et al., 2018; Kraus, 2009; Mateo 
et al., 2011).

Introductions of alien freshwater animals increased 
after the mid-nineteenth century due to the activities of 

acclimatization societies, mainly for angling (Gherardi 
et al., 2009). Established alien species numbers also 
increased notably after World War II due to more intensive 
trade, openings of major inland canals and waterways in 
Central and Western Europe, and the intensification of 
aquaculture (Gherardi et al., 2009; Nunes et al., 2015). 
The main pathways of introduction were releases and 
escapes through aquaculture, deliberate stocking, and 
pet and aquarium trades. The latter acquired more 
importance as a driver facilitating introductions since the 
1990s (Nunes et al., 2015). In central and north-eastern 
Europe, interconnected canals and waterways were the 
main pathways of introduction, while in Central and Western 
Europe releases and escapes are linked to aquaculture and 
pet and aquarium trades. A slight decrease in introduction 
rates in recent decades has been reported on the Iberian 
Peninsula (Muñoz-Mas & García-Berthou, 2020). Alien 
species introductions are further assisted by unintentional 
translocations, such as the opening of waterways in Israel 
(Goren & Ortal, 1999).

Across the coastal areas of Europe, the number of 
detections and introductions of alien species has increased 
over time, although numbers differ among assessments 
(Bailey et al., 2020; Gollasch, 2006; Katsanevakis et al., 
2020; Tsiamis et al., 2019), especially for the eastern 
Mediterranean Sea since the earliest inventories taken 
during the 1960s (Galil et al., 2021b). For example, the 
number of marine alien species along the coast of Israel has 
increased three-fold from 1970 (147 alien species) to 2020 
(452 alien species), and this trend is consistent as new alien 
species detections still appear in the scientific literature. For 
the Baltic Sea, the annual introduction rate has more than 
doubled since 1950: 1.4 species per year between 1950 
and 1999 and 3.2 between 2000 and 2018 (ICES, 2019).

Status

Currently 85 alien mammals are known to be established 
in Europe and Central Asia, from 7 orders and 24 families 
(Biancolini et al., 2021). The most numerous orders are 
Rodentia (26 species), Cetartiodactyla (24), Carnivora (18) 
and Eulipotyphla (8). Alien mammal hotspots are present 
in Central and Western Europe, numerous Mediterranean 
islands, the British Isles, Italy, Scandinavia, Eastern Europe 
and European Russia (Biancolini et al., 2021). Most alien 
mammals are native to other parts of Europe and Central 
Asia (42) and the major outside donor is Asia and the Pacific 
(14), followed by the Americas (10), and Africa (4). This 
great reshuffling of mammal fauna was mainly driven by 
hunting (36 cases), pet trade (22), stowaway transportation 
(16), intentional introductions (12), conservation purposes 
(11) and fur exploitation (11) (Biancolini et al., 2021). For 
example, squirrels were released or escaped from captivity 
in the last several decades, creating numerous alien 
populations scattered across Europe (Biancolini et al., 
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2021). A well-known example is Sciurus carolinensis (grey 
squirrel), which was introduced to the United Kingdom and 
Italy (Bertolino et al., 2008, 2014; Gaertner et al., 2016). 
Ondatra zibethicus (muskrat), Nyctereutes procyonoides 
(raccoon dog), and Mustela vison (American mink) are 
among the most widespread species in Europe and Central 
Asia (Biancolini et al., 2021; Genovesi et al., 2012; Tedeschi 
et al., 2022). 

Many alien bird species were introduced during European 
colonial expansion including a large number introduced to 
Europe. Game and ornamental species were particularly 
popular, such that Europe now has populations of a number 
of alien galliforms and wildfowl. Other such introductions 
pre-date colonialism, such as Phasianus colchicus 
(common pheasant), which is widespread in Europe and 
still released in various countries every year by the tens 
of millions. Prior to the bird flu epidemic of 2005, Europe 
was a major hub for the caged bird trade, but European 
Union-wide bans on imports have greatly restricted the 
influx of species from outside the continent (Reino et al., 

2017). There is still extensive trade in captive-bred birds 
within Europe, and escapes continue to threaten further 
alien species introductions. The caged bird trade is the 
major source of alien species in Asia, notably in trade hubs 
in the Far East. Millions of birds continue to be trapped 
from wild populations in Asia, and pose a substantial 
extinction threat to popular species, as well as a risk of new 
alien populations.

Europe and Central Asia have several global hotspots of 
alien amphibians and reptiles. These include the Balearic 
Islands (20 species), mainland Spain (13 species), mainland 
Italy (11 species), mainland France (10 species), and the 
United Kingdom (10 species) (Capinha et al., 2017; Ficetola 
et al., 2010; Kark et al., 2009; Kraus, 2009; Mateo et al., 
2011). Fewer alien reptiles and amphibians have been 
reported from Central Asian countries than in Europe 
(Capinha et al., 2017; Kraus, 2009).

According to Nunes et al. (2015), there are 534 alien 
freshwater animals (46 per cent native to some European 

Table 2  26   Numbers of established alien species for subregions of Europe and Central 
Asia . 

For mammals, birds, and vascular plants ranges of values indicate variation among databases (section 2 .1 .4 for further details about 
data sources and data processing). Note presented numbers may deviate from those reported in the text due to variation among data 
sources. A data management report for the data underlying this table is available at https://doi.org/10.5281/zenodo.7615582

Central and Western 
Europe

Central Asia Eastern Europe Total

Mammals 64-133 5-23 24-80 72-164

Birds 218-627 4-5 20-24 221-630

Fishes 423 51 119 469

Reptiles 94 0 6 98

Amphibians 42 2 5 43

Insects 2,698 28 213 2,747

Arachnids 289 2 6 289

Molluscs 557 4 75 584

Crustaceans 420 10 88 563

Vascular plants 4,498-7,896 134-361 1,950-2,400 5,146-8,519

Algae 483 0 82 526

Bryophytes 23 0 1 23

Fungi 594 3 28 609

Oomycetes 59 0 2 59

Bacteria and protozoans 22 0 2 23

Total 12,711-16,587 265-511 2,903-3,413 11,472-15,346

https://doi.org/10.5281/zenodo.7615582


THE THEMATIC ASSESSMENT REPORT ON INVASIVE ALIEN SPECIES AND THEIR CONTROL

158

areas) in Europe and Central Asia. The Iberian Peninsula, 
France, Italy, the United Kingdom, and Germany host the 
highest numbers of species (Gollasch & Nehring, 2006; 
R. P. Keller et al., 2009; Muñoz-Mas & García-Berthou, 
2020; Nunes et al., 2015; Teletchea & Beisel, 2018). For 
Uzbekistan, 31 alien freshwater fishes have been recorded 
(Yuldashov, 2018). Most introduced fish arrived mainly 
through stocking, aquaculture, or pet and aquarium trades, 
followed by crustaceans and molluscs, both mainly via 
ornamental trade and through corridors (e.g., canals and 
waterways; Muñoz-Mas & García-Berthou, 2020; Nunes 
et al., 2015). Some species, such as Cyprinus carpio 
(common carp), Sander lucioperca (pike-perch), Silurus 
glanis (wels catfish) or Ponto-Caspian gobies, are only native 
to parts of western Europe but have now established in 
much of European fresh waters (e.g., Leprieur et al., 2008). 
Similarly, many widespread species such as Perca fluviatilis 
(perch), Rutilus rutilus (roach) or Alburnus alburnus (bleak) 
are not native to the peninsulas in southern Europe, which 
have distinct, threatened fish faunas with high endemism 
(Yuldashov, 2018).

2.4.5.2 Plants 

Trends

Since the start of the nineteenth century, Central and 
Western Europe has had a steady increase in alien plant 
introductions and data indicate no deceleration of this trend 
(Figure 2 .33). First records for Eastern Europe and Central 
Asia show very slow increases, partly due to lower research 
effort in these regions relative to Central and Western 
Europe (section 2 .4 .5 .5). A recent Europe-wide inventory 
of established alien plants, including Central and Western, 
and a portion of Eastern Europe was conducted through 
the project Delivering Alien Invasive Species In Europe 
(Lambdon et al., 2008) and recorded 4,139 established 
alien plant taxa (Pyšek, Pergl, et al., 2017; van Kleunen et 
al., 2015), an increase of 390 taxa (or 9.6 per cent). The 
introduction of alien aquatic plants increased after 1950, 
the main pathway being the ornamental trade, followed by 
cultivation and contaminants of commodities (Nunes et al., 
2015). Ornamental trade and cultivation had similar rates in 
different European areas while contaminants of commodities 
were mostly recorded in southern Europe (Nunes et 
al., 2015). The number of alien aquatic plant species is 
still relatively low in European freshwaters but is sharply 
increasing, having doubled in nearly 30 years (Hussner et 
al., 2010). 

Status

In Central and Western Europe, a total of 8,565 alien 
vascular plants, 497 established alien algae, and 25 
established alien bryophytes have been recorded (Table 
2 .27). The GloNAF database reports 4139 established alien 

vascular plants (Pyšek, Pergl, et al., 2017; van Kleunen et 
al., 2015). The highest numbers of established alien plants 
are recorded in England (1,379), Sweden (874), Scotland 
(861), Wales (835), France (716), Norway (595), Belgium 
(508), Italy (478), Spain (454), and Germany (451) indicating 
that the northern part of the continent, particularly United 
Kingdom, Ireland, and Scandinavia are heavily invaded by 
established alien species. Only a few regions in Eastern 
Europe (perhaps due to lack of data) harbour comparably 
high numbers of established alien species, such as the 
European part of Russia (649), Ukraine (626) and Bulgaria 
(593) (Pyšek, Pergl, et al., 2017; van Kleunen et al., 2015, 
2019). Some of these countries also have the highest per 
centage of established alien species as a proportion of the 
total flora. In England, established alien species make up 47 
per cent of the total flora, in Wales 44 per cent, Scotland 42 
per cent, Sweden 35 per cent, in Norway 32 per cent, and 
in the European part of Russia 37 per cent (Pyšek, Pergl, 
Dawson, et al., 2020). There are 35 alien species that have 
become established in more than 30 regions of Europe, 
that is, at least half of the European regions considered in 
the GloNAF database, the most widespread being Erigeron 
canadensis (Canadian fleabane; recorded in 76 per cent 
of regions), Elodea canadensis (Canadian pondweed), 
Matricaria discoidea (rounded chamomile), Oenothera 
biennis (common evening primrose), Solidago canadensis 
(Canadian goldenrod) and Galinsoga parviflora (gallant 
soldier) (Table 2 .27). Central Asia is generally less invaded 
by alien plants with country floras in this region harbouring 
50–70 established alien species which corresponds to 
1.9–4.5 per cent contribution to total plant diversity (Pyšek, 
Pergl, et al., 2017).

According to Nunes et al. (2015), there are 210 alien 
freshwater plants (38 per cent native to some European 
areas). Hussner (2012) found that the highest number 
of alien plant species in all of Europe is reported for Italy 
and France, followed by Germany, Belgium, Hungary, 
and the Kingdom of the Netherlands. The most frequently 
introduced plants are the angiosperms: 200 out of 210 
(Nunes et al., 2015).

Over last decade, negative impacts associated with the 
spread of particular alien aquatic plant species (e.g., Elodea 
spp. (waterweeds), Pontederia crassipes (water hyacinth), 
Ludwigia spp. (primrose-willow), Hydrocotyle ranunculoides 
(floating pennywort), Myriophyllum aquaticum (parrot’s 
feather)) increased in Europe (Hussner, 2012). Even though 
the number of alien aquatic plants appears relatively small 
compared to alien terrestrial plant species, the European 
and Mediterranean Plant Protection Organization (EPPO, 
2021) has listed 18 of these species as invasive or 
potentially invasive within the European and Mediterranean 
Plant Protection Organization’s region covering most of 
Europe and parts of Central Asia and North Africa. In 
total, 96 aquatic alien species from 30 families have been 
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Table 2  27   Top most widespread invasive alien species for Europe and Central Asia .

The number of regions where the species has been recorded and classified as invasive based on GRIIS (Pagad et al., 2022). Note this 
table refers only to the distribution of invasive alien species rather than their impacts which are covered in Chapter 4. A maximum of 
three species is shown for each group (see section 2 .1 .4 for further details about data sources and data processing). “No. of regions” 
denotes the number of regions with confirmed occurrences of that species according to the chapter database. A data management 
report for the data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582 

Species name No . of regions Species name No . of regions

Mammals Molluscs

Mustela vison (American mink) 15 Dreissena polymorpha (zebra mussel) 15

Rattus norvegicus (brown rat) 11 Corbicula fluminea (Asian clam) 13

Myocastor coypus (coypu) 10 Potamopyrgus antipodarum (New Zealand 
mudsnail)

13

Birds Crustaceans

Alopochen aegyptiaca (Egyptian goose) 8 Pacifastacus leniusculus (American signal 
crayfish)

18

Branta canadensis (Canada goose) 7 Amphibalanus improvisus (bay barnacle) 14

Psittacula krameri (rose-ringed parakeet) 6 Faxonius limosus (Spiny-cheek crayfish) 14

Fishes Vascular plants

Pseudorasbora parva (topmouth gudgeon) 19 Ailanthus altissima (tree-of-heaven) 32

Lepomis gibbosus (pumpkinseed) 18 Robinia pseudoacacia (black locust) 31

Gambusia holbrooki (eastern mosquitofish) 15 Solidago canadensis (Canadian goldenrod) 26

Reptiles Algae

Trachemys scripta (pond slider) 6 Sargassum muticum (wire weed) 7

Trachemys scripta elegans (red-eared slider) 4 Coscinodiscus wailesii (diatom) 5

Chelydra serpentina (common snapping turtle) 2 Bonnemaisonia hamifera (red algae) 4

Amphibians Bryophytes

Lithobates catesbeianus (American bullfrog) 7 Campylopus introflexus (heath star moss) 10

Pelophylax ridibundus (Eurasian marsh frog) 3 Orthodontium lineare (cape thread-moss) 2

Triturus carnifex (Italian crested newt) 3 Fungi

Insects Ophiostoma novo-ulmi (Dutch elm disease) 9

Cameraria ohridella (horsechestnut leafminer) 13 Hymenoscyphus fraxineus (ash dieback) 5

Harmonia axyridis (harlequin ladybird) 12 Ophiostoma ulmi (Dutch elm disease) 4

Leptinotarsa decemlineata (Colorado potato 
beetle)

8 Oomycetes

 Arachnids Aphanomyces astaci (crayfish plague) 13

Opilio canestrinii (harvestman) 3 Phytophthora cambivora (root rot of forest trees) 3

Varroa destructor (Varroa mite) 3 Phytophthora ramorum (sudden oak death) 3

Mermessus trilobatus (trilobate dwarf weaver) 2 Bacteria and protozoans

Anabaenopsis raciborskii (cyanobacteria) 1

Erwinia amylovora (fireblight) 1

https://doi.org/10.5281/zenodo.7615582
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reported as established alien species from at least one 
European country. Sixteen alien species belong to the 
family of Hydrocharitaceae, followed by the Nymphaeaceae 
and Lemnaceae (both with nine plant species). Most 
aquatic alien plant species introduced into Europe are 
native to North America (26 per cent) and Asia (29 per 
cent) (Hussner, 2012). The highest number of aquatic alien 
plant species was found in Italy (34 species), France (34 
species), Germany (27), Belgium, and Hungary (both 26), 
and was lowest in the Balkan region and the northern and 
eastern parts of Europe (Hussner, 2012). Elodea canadensis 
(Canadian pondweed) is the most widely distributed 
alien aquatic plant in Europe, occurring in 41 European 
countries (but not in Cyprus, Malta, Iceland, Greece, and 
Montenegro). Azolla filiculoides (water fern) is the second 
most widely distributed species (25 countries), followed by 
Vallisneria spiralis (eelweed) (22) and Elodea nuttallii (Nuttall’s 
waterweed) (20) (Hussner, 2012). 

2.4.5.3 Microorganisms

Trends

Due to global trade of live plants and animals, the rate 
of introduction of alien fungi, oomycetes, and other 
microorganisms to Europe and Central Asia is likely to 
further accelerate (Hulme, 2021). Several fungi, oomycetes, 
and other microorganisms causing diseases have been 
introduced in recent decades (Nunes et al., 2015). For 
example, within the past 20 years, 5 downy mildew 
pathogens with the potential to cause significant losses 
have been introduced to Europe (Gilardi et al., 2013; Görg 
et al., 2017; Thines, 2011; Thines et al., 2020; Voglmayr et 
al., 2014). These organisms were most likely introduced with 
seeds or latently infected plants, making clear the necessity 
for better quarantine procedures for alien plants and for local 
production of plants and seeds whenever possible.

Status

Europe and Central Asia has a well-documented 
history of biological invasions by alien plant and animal 
parasitic fungi and oomycetes. Well-known examples are 
Batrachochytrium dendrobatidis (chytrid fungus; Longcore 
et al., 1999), Aphanomyces astaci (crayfish plague; Mrugała 
et al., 2015), Phytophthora infestans (Phytophthora blight; 
Yoshida et al., 2013), and Plasmopara viticola (grapevine 
downy mildew; Gessler et al., 2011). In addition, alien 
species have also invaded Europe as saprotrophsor 
symbionts, but the few documented examples such as 
Clathrus archeri (devil’s fingers) are likely only the tip of the 
iceberg (Desprez-Loustau et al., 2007; Litchman, 2010).

In Europe and Central Asia, the highest numbers of invasive 
alien forest pathogenic fungi are reported from the central-
southern region (e.g., France, Italy, and Switzerland; 

Santini et al., 2013). For example, Phytophthora ramorum 
(sudden oak death), which has had significant impacts 
on native forests, is thought to have been introduced to 
the United Kingdom via the ornamental plant trade (Jung 
et al., 2021). Most forest pathogenic fungi are native 
to the northern hemisphere, but about one third are of 
unknown origin (Desprez-Loustau, 2009). The incidence 
in Europe of alien powdery mildews (Erysiphales) is 
higher in terms of expected species numbers and this 
may reflect responses to climate change in a group 
adapted for long-distance aerial spore dispersal (Heluta 
et al., 2009). Using dried reference collection samples, 
Gross et al. (2021) demonstrated that three species of 
Erysiphe could be linked to the incidence of powdery 
mildew in oaks, a disease that emerged in Europe at the 
beginning of the twentieth century. By comparison, the 
incidence of specialized alien insect parasites of the order 
Laboulbeniales is comparatively low given their high species 
numbers (Desprez-Loustau, 2009). More aggressive 
genotypes of known plant pathogenic fungi may also arrive 
and become invasive (Arenz et al., 2011). Alien and invasive 
microfungi pathogenic to animals include Batrachochytrium 
dendrobatidis (chytrid fungus), which is the agent of 
chytridiomycosis, a disease spread by trade and causing 
massive amphibian declines worldwide (Weldon et al., 
2004), and Pseudogymnoascus destructans (white-nose 
syndrome fungus) in bats (Thakur et al., 2019).

Among all IPBES regions, Europe and Central Asia 
represents the region with the best available knowledge 
on the distribution of alien macrofungi with several national 
lists of alien fungi available (e.g., Desprez-Loustau et al., 
2010; Motiejūnaitė et al., 2016). However, information for the 
Central Asian and Eastern European sub-regions, is much 
scarcer, and the absence or low number of alien macrofungi 
as known for these regions is likely a clear underestimation 
of actual numbers. 

2.4.5.4 Islands 

Mediterranean islands are biodiversity hotspots and have 
been invaded by large numbers of alien plant and animal 
species for centuries, many of which are now established 
(e.g., Capizzi, 2020; Chainho et al., 2015; Ruffino et al., 
2009). Many North Sea and Baltic Sea islands have also 
been invaded, for example by Mustela vison (American 
mink) (e.g., Bonesi & Palazon, 2007). Islands belonging 
to Europe include overseas territories in most oceans. In 
particular, the United Kingdom and France have many 
islands in the southern Atlantic and in the Pacific. Biological 
invasions on islands related to European countries may be 
due to proximity of continents (islands off the Atlantic and 
Channel Sea coasts) or the colonization of more remote 
islands (e.g., French Polynesia and New Caledonia). Among 
the most studied taxa, the mammals of these islands, such 
as Gough Island, Crozet Island, or the Kerguelen Islands 
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include rats, mice, cats, cattle, and mouflons (Davies et al., 
2015; C. W. Jones et al., 2019; Pascal, 1980). 

2.4.5.5 Data and knowledge gaps 

While sampling and reporting intensity is high for alien 
mammals in Western Europe, data coverage and quality 
decrease eastward towards Eastern Europe, including 
Russia (Biancolini et al., 2021). Significantly fewer sources 
of information are available for these areas in comparison to 
Western Europe and reports frequently lack extensive details 
on alien species trends, ecology, distribution, and impacts. 
This could reflect linguistic barriers that hinder data sharing 
(Angulo et al., 2021) as the available literature published 
in English with respect to Eastern Europe cites numerous 
works written in other languages (e.g., Russian) (Khlyap 
et al., 2011). A similar situation is reported for freshwater 
species, which are well reported for Europe, especially 
Western Europe (Nunes et al., 2015), while less data are 
available for Central Asia. 

While information available on alien amphibians and 
reptiles in this IPBES region has been thoroughly collected 
(Capinha et al., 2017; Kark et al., 2009; Kraus, 2009), 
some countries in Western Europe and Central Asia have 
been understudied and those lists of alien amphibians 
and reptiles are likely incomplete (Capinha et al., 2017; 
Seebens, Blackburn, et al., 2017; N. J. van Wilgen et 
al., 2018).

Europe is amongst the best-researched continents for 
plant invasions (Pyšek, Hulme, et al., 2020) and many 
regions in Central and Western Europe possess high quality 
data compared to other parts of the world (Lambdon et 
al., 2008; Pyšek, Blackburn, et al., 2017; Pyšek, Pergl, 
Dawson, et al., 2020). Many countries have specialized 
catalogues and inventories with information going beyond 
the distribution of alien species (e.g., Celesti-Grapow et 
al., 2009; E. J. Clements & Foster, 1994; Essl & Rabitsch, 
2002; Klotz et al., 2003; Preston et al., 2002, 2004; Pyšek 
et al., 2002; S. C. P. Reynolds, 2002). For Eastern Europe, 
there are data gaps and incomplete species lists for several 
countries including a large part of Russia (van Kleunen 
et al., 2015, 2019). Work is currently underway to close 
this data gap (e.g., Leostrin & Pergl, 2021; Vinogradova 
et al., 2018), and more species are likely to be identified 
as established alien species in Europe. Some countries 
in Central Asia also lack inventories (appendix 1 in Pyšek, 
Blackburn, et al., 2017). 

2.5 TRENDS AND STATUS 
OF ALIEN AND INVASIVE 
ALIEN SPECIES BY IPBES 
UNITS OF ANALYSIS

This section reports on the temporal trends and status of 
the distribution of alien and invasive alien species for each 
IPBES unit of analysis. IPBES units of analysis represent a 
broad-based global classification system considering both 
the state of nature in classes, equivalent to biomes, and 
in anthropogenically-altered biomes or “anthromes”. The 
units correspond broadly to global classifications of nature 
and human interactions, serving the need for analysis and 
communication in a global policy context. More details 
about the units of analysis are provided in Chapter 1, 
section 1 .6 .5 and online (IPBES, 2019b). The following 
section is sub-divided into an overview (section 2 .5 .1), 
terrestrial (section 2 .5 .2), freshwater (section 2 .5 .3), 
and marine (section 2 .5 .4) units of analysis as well as 
anthroponized areas (section 2 .5 .5).

2.5.1 Overview of trends and 
status by IPBES units of analysis

While no studies on biological invasion dynamics among 
comparative units of analysis exist, some studies have 
investigated patterns using similar delineations of study 
regions such as freshwater, marine, and terrestrial habitats. 
In general, far more studies are available for terrestrial 
alien species (although availability varies for above- and 
belowground) than for marine and freshwater systems. 
For instance, one comprehensive global analysis of first 
records of established alien species shows that 64 per cent 
of all studies had an explicit focus on terrestrial habitats, 
13 per cent addressed marine and 12 per cent freshwater 
habitats, and the remaining were cross-taxonomic (Seebens, 
Blackburn, et al., 2017). As a result, most established alien 
species have been reported from terrestrial habitats (over 75 
per cent), while freshwater or marine alien species numbers 
are both of similarly low range (less than 10 per cent). 
Terrestrial alien species invasions were usually recorded earlier 
in time compared to freshwater species, which in turn were 
reported earlier than marine species (Zieritz et al., 2017). 
Likewise, before 1840 most (about 75 per cent) established 
alien species recorded in north-western Europe represented 
terrestrial species, and the proportion has dropped 
continuously to less than 20 per cent more recently (Zieritz et 
al., 2017). Only a few studies compared the trends and status 
of alien species across terrestrial, freshwater, and marine 
habitats at large spatial scales (e.g., Roy, Peyton, et al., 2014; 
Sandvik, Dolmen, et al., 2019; H. Xu et al., 2012; Zieritz et al., 
2017). Other studies reported similar increases in established 
alien species across terrestrial, marine, and freshwater 
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habitats with a tendency of freshwater alien species numbers 
accelerating more rapidly in recent years (O’Flynn et al., 2014; 
Roy, Preston, et al., 2014; H. Xu et al., 2012). 

2.5.2 Trends and status of alien 
and invasive alien species in 
terrestrial units of analysis

Box 2  7   Mountain regions: A global assessment of trends and status of alien and 
invasive alien species .

Elevational patterns of plant invasions have been described for 
many mountain regions around the world and with very few 
exceptions, established alien species richness peaks at lower 
elevations and declines towards the highest elevations, closely 
following patterns of human settlements and disturbance (e.g., 
Alexander et al., 2011; Fuentes-Lillo et al., 2021; Haider et al., 
2010; Pauchard et al., 2009; Pérez-Postigo et al., 2021; Tanaka 
& Sato, 2016). Most introduced alien species are pre-adapted 
to the environmental conditions at low elevations and need a 
broad environmental tolerance to spread towards high mountain 
sites (Alexander et al., 2011). Therefore, alien species at high 
elevations are typically environmental generalists, and only 
rarely are mountain specialist species directly introduced at high 
elevations (Alexander et al., 2016; Steyn et al., 2017). As the 
regional lowlands are the most important source of alien plants 
found at high elevations, alien mountain floras are surprisingly 
dissimilar across mountain ranges and continents. In a study 
analyzing alien species lists from 13 mountain regions, about 
60 per cent of alien species were recorded in a single mountain 
area, and less than 5 per cent were found in more than half of 
the regions included in the study (McDougall et al., 2011).

Anthropogenic corridors such as roads, trails, and railways 
strongly facilitate the spread of alien plants from low to high 
elevations (Alexander et al., 2011; Lembrechts et al., 2017; 
Liedtke et al., 2020; Rashid et al., 2021; M. Yang et al., 2018), 
and alien plants are much more common in disturbed habitats 
directly adjacent to such corridors compared to more remote 
natural habitats (Seipel et al., 2012). Thus far, few alien species 
have been able to penetrate natural communities, especially at 
higher elevations, but those that have invaded are often shade 
and moisture tolerant (McDougall et al., 2018). 

While there is no evidence that alien species in mountains 
have caused the local extinction of native species, they have 
a strong impact on multiple dimensions of biodiversity (B. 

W. van Wilgen et al., 2020). First, they reduce differences in 
community composition between low and high elevations, 
and thus negatively affect beta-diversity, leading to a biotic 
homogenization in mountains – and in the long-term maybe 
also across mountain regions. A global study based on a 
standardized vegetation survey demonstrated that alien species 
along roadsides either shifted the richness peak of native 
plants to lower elevations, or even changed the shape of the 
relationship between native species richness and elevation 
(Haider et al., 2018).

In the last 15–20 years, research on plant invasion patterns in 
mountains has increased markedly. However, published studies 
are unevenly spread across mountains worldwide. While there 
are many studies from regions with temperate or Mediterranean 
climates, there are few from the subtropics and tropics (e.g., 
the Andes, mesoamerica, Africa, and Asia) or high latitude 
boreal and Arctic regions. A second shortcoming is the lack of 
long-term monitoring of alien species in mountains. Few studies 
have used permanent monitoring sites to document changes 
in alien species occurrence in mountains (but see Kalwij et al., 
2015; Turner et al., 2021). The Mountain Invasion Research 
Network (MIREN, www.mountaininvasions.org) has developed 
a standardized survey protocol to study and monitor patterns 
of plant invasions into mountains (but not in Africa), which has 
been applied in 19 regions worldwide since 2007 (Haider et al., 
2022; Figure 2 .34). While assessing future trends of alien plant 
species distributions in mountains remains a challenge, efforts 
are being conducted to model invasions using data collected at 
multiple scales especially under climate change (Lembrechts et 

al., 2017; Petitpierre et al., 2016) and shifts in biotic interactions 
using evidence collected through both observational and 
experimental approaches. Such studies show that future plant 
invasions in mountains will increase in the future under climate 
change and increased anthropogenic pressure (Alexander et 

al., 2016; Petitpierre et al., 2016).

2.5.2.1 Tropical and subtropical dry and 
humid forests

Tropical and subtropical forests cover about 52 per cent of 
global forested land and hold 200 billion tons of carbon in 
aboveground biomass (IPBES, 2019a). These ecosystems 
harbour the highest biological diversity globally, but also the 
highest number of threatened species (IPBES, 2019a). Since 
1990, over 250 million hectares were cleared for agriculture 
and urban expansion, infrastructure and mining (IPBES, 
2019a; Vancutsem et al., 2021). Although some regions 

have reported net gain in forest cover, this trend is mainly 
driven by planted-forest expansion with alien tree and palm 
species (Sloan & Sayer, 2015).

Trends

Historically, tropical and subtropical dry and humid forests 
have experienced fewer introductions of alien species 
relative to temperate ecosystems. Compared to other 
mainland terrestrial regions of the globe, tropical and 
subtropical dry and humid forests have lower numbers of 

http://www.mountaininvasions.org
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Figure 2  34   Locations of the MIREN surveys . 

Sites in mountain regions where MIREN surveys have been used to sample and monitor plant invasions across elevational 
gradients. Source: Haider et al. (2022), https://doi.org/10.1002/ece3.8590, under license CC BY 4.0.3

invasive alien species for all taxonomic groups (Dawson et 
al., 2017). For instance, records of invasive alien species in 
the tropical and dry forests of South America mostly date 
from the past 50 years and have increased only in the last 
20 years (Zenni, 2015; Zenni & Ziller, 2011). Also, tropical 
South America has two or three times fewer established 
alien plants than temperate South America despite its 
greater area (Zenni et al., 2022). However, the recent 
and ongoing increases in biological invasions in tropical 
and subtropical dry and humid forests can be attributed 
in large part to agricultural and urban expansion and 
increased propagule pressure (Waddell et al., 2020). Forest 
degradation and clearcutting allow the establishment and 
spread of numerous invasive alien grass species, some of 
the most prominent invaders in tropical forest ecosystems 
(Dar et al., 2019; Zenni, 2015; Zenni & Ziller, 2011).

Lack of reliable baseline information from most countries in 
Asia prevents a comprehensive analysis of trends of alien 
plant invasions in tropical and subtropical forests in this 
region. Available information shows an increase of one to 
eight major species during a period of 7-18 years in five 
countries in the region (Banerjee et al., 2021; Government 
of Myanmar, 2005; Islam et al., 2003; Khuroo et al., 2012; 

Mukul et al., 2020; Pallewatta et al., 2003; Shrestha & 
Shrestha, 2021; Tiwari et al., 2005; Wijesundara, 2010).

Status

Some tropical and subtropical dry and humid forests on 
islands have some of the most noteworthy examples of 
biological invasions. Hawaii, for instance, has a greater 
number of established alien species than native species 
(G. W. Cox, 1999). Species such as Psidium cattleianum 
(strawberry guava), Morella faya (firetree), Hedychium spp. 
(ginger), and Sus scrofa (feral pig) have caused significant 
ecological impacts in Hawaiian tropical forests. Another 
highly invaded tropical island, the Galapagos, considers 
biological invasions the most relevant threat to native 

3. This map is directly copied from its original source (Haider et al., 2022) 
and was not modified by the assessment authors. The map is copyrighted 
under license Attribution 4.0 International (CC BY 4.0). The designations 
employed and the presentation of material on the maps used in the 
assessment do not imply the expression of any opinion whatsoever on 
the part of IPBES concerning the legal status of any country, territory, city 
or area or of its authorities, or concerning the delimitation of its frontiers 
or boundaries. These maps have been prepared or used for the sole 
purpose of facilitating the assessment of the broad biogeographical 
areas represented therein and for purposes of representing scientific data 
spatially.

https://doi.org/10.1002/ece3.8590
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biodiversity and the alien taxa outnumber the native species 
(Zenni et al., 2022). In Guam, invasive alien reptiles (notably 
Boiga irregularis (brown tree snake)) and some invasive 
alien tree species have been reported to extirpate native 
species and drastically change ecosystem processes (Fritts 
& Leasman-Tanner, 2001; Marler, 2020).

In South America, there are 247 known established alien 
plant species in Bolivia, 503 in Brazil, 265 in Colombia, 
348 in Ecuador, 166 in Guyana, 72 in Paraguay, 288 in 
Peru, and 219 in Venezuela (Zenni et al., 2022). For the 
Caribbean, there are at least 446 invasive alien species 
known among plants, invertebrates, vertebrates, fungi, 
and diseases (Kairo et al., 2003). Herpestes javanicus 
auropunctatus (small Indian mongoose) is one of the most 
notorious of these species in the Caribbean as it has been 
associated with the extinction of five native species. In Asia, 
179 invasive alien species have been recorded in tropical 
forests of central India (Dar et al., 2019). For plants, the 
numbers of invasive alien plants in tropical and subtropical 
forests (based on data from 10 countries) range from 15 to 
58, the highest being in forests of Indonesia (58 species) 
followed by forests in China (52) (Banerjee et al., 2021; 
Mukaromah & Imron, 2019; Mukul et al., 2020; Qureshi 
et al., 2014; Shrestha & Shrestha, 2021; D. T. Tan et al., 
2012; Weber et al., 2008; Wijesundara, 2010; H. Xu et 
al., 2012). The most widespread species in the region are 
Lantana camara (lantana) (recorded in 18 countries of the 
19 for which data are available), Leucaena leucocephala 
(leucaena, 18 countries), Mikania micrantha (bitter vine, 
16 countries), Ageratum conyzoides (billy goat weed, 16 
countries), Chromolaena odorata (Siam weed, 15 countries), 
Mimosa diplotricha (giant sensitive plant, 13 countries), 
Prosopis juliflora (mesquite, 12 countries) and Parthenium 
hysterophorus (parthenium weed, 11 countries).4 In India, 
the invasive alien plant Chromolaena odorata dominates 
the understory of forests and has been shown to negatively 
affect the pollination of native species (Peh, 2010; Chapter 
4, section 4 .4 .3). Another invasive alien plant Lantana 
camara, a plant species native to South America and 
invasive in most tropical regions of the world, can greatly 
reduce the productivity of economically important plants 
(Peh, 2010).

In Africa in recent decades the establishment of alien tree 
plantations, mainly pines and eucalyptus, has been a 
high priority in governmental forestry (Obua et al., 2010; 
Tumushabe & Mugyenyi, 2017). The replacement of natural 
forests with alien species, coupled with other human 
disturbances, has compounded the threat of invasive alien 
species that include plants such as Broussonetia papyrifera 
(paper mulberry), Senna spectabilis (whitebark senna), 
Lantana camara (lantana; Totland et al., 2005), and also 

4. Data extracted from the Global Invasive Species Database (GISD; http://
www.iucngisd.org/gisd/), GRIIS (https://doi.org/10.5281/zenodo.6348164) 
and Association of South-east Asian Nations (ASEAN; https://asean.org/)

insect species like Gonometa podocarpi (podocarpus moth; 
FAO, 2012), Achaea catocaloides (African apple tree moth; 
e.g., Martins et al., 2015) and Leptocybe invasa (blue gum 
chalcid; FAO, 2012). These invasive alien species have the 
potential to pose a threat to forest ecosystems (Hamilton et 
al., 2016). However, very little is known about the invasion of 
alien species into tropical forests and there is no up-to-date 
detailed assessment of the potential risks that these invasive 
alien species, especially under rapidly changing climate, are 
causing to the forests and their associated biodiversity and 
nature’s contributions to people (Chapter 3, section 3 .3 .4).

Data and knowledge gaps 

A worldwide review of invasive alien species in tropical and 
subtropical dry and humid forests has never been done, 
and most data available to date are at the country-level 
rather than at the level of biogeographic regions such as 
units of analysis. Of the countries with major areas covered 
by tropical and subtropical dry and humid forests, data 
are available mostly for South America, some parts of 
Mesoamerica and the Caribbean, and for South Asia, while 
data is scarce for tropical and subtropical dry and humid 
forests in Africa.

Biological invasions in tropical and subtropical dry and 
humid forests have been less studied than most other 
terrestrial ecosystems. This lack of data is, in part, explained 
by the lower numbers of invasive alien species recorded for 
tropical forests compared to other ecosystems. However, 
given the growing anthropogenic pressure over these 
regions, it is likely that biological invasions will increase in the 
next decades in tropical and subtropical forests, especially 
in regions with high intensity of land use change. Most 
reports available for tropical and subtropical dry and humid 
forests are for plant invasions, and there is very limited 
data on animal invasions except for a few well-studied 
species, such as Herpestes javanicus auropunctatus (small 
Indian mongoose) and Boiga irregularis (brown tree snake). 
For most regions with these forests, lists of established 
plant species are available (Pyšek, Pergl, et al., 2017; van 
Kleunen et al., 2019), but these data provide very little 
insight into the actual situation of biological invasions in 
tropical and subtropical dry and humid forests (e.g., spread 
and impacts).

As a general trend in Asia, the cumulative number of 
invasive plants is known to increase exponentially over years 
(e.g., in China: H. Xu et al., 2012). However, information 
on trends and status of invasive alien plants in tropical and 
subtropical forests in Asia are largely unavailable. Attempts 
are currently being made by some countries to prepare 
national inventories for invasive alien plants (e.g., Dorjee 
et al., 2020; Mukul et al., 2020), though these lists do not 
appear to include information on the habitats in which the 
alien species occur. 

http://www.iucngisd.org/gisd/), GRIIS (https://doi.org/10.5281/zenodo.6348164
http://www.iucngisd.org/gisd/), GRIIS (https://doi.org/10.5281/zenodo.6348164
https://asean.org/
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2.5.2.2 Temperate and boreal forests 
and woodlands

Trends
The view that forested ecosystems are resistant to invasions 
by alien plants has eroded over the past two decades 
as observations of local dominance by both herbaceous 
and woody invaders in forests worldwide accumulate 
(Fridley, 2013; Liebhold et al., 2017; P. H. Martin et al., 
2009). Although estimates of trends in alien plant richness 
specific to forests are difficult to determine for most regions, 
biological invasions in temperate forests are increasing 
globally and will likely accelerate as high latitudes continue 
to warm with climate change (Pauchard et al., 2016; 
Chapter 3, section 3 .3 .4), particularly for boreal forests 
(Mulder & Spellman, 2019; Sanderson et al., 2012). 
Habitat fragmentation and road-building activities are also 
principal drivers that facilitated he increase in forest plant 
invasions (Chapter 3, section 3 .3 .1 .2), both as a means 
to disperse alien propagules and to increase light and 
nutrient availability, which facilitate the growth of invader 
source populations that may spread into adjacent closed-
canopy forests (R. O. Bustamante & Simonetti, 2005; Flory 
& Clay, 2009; Kuhman et al., 2010). Afforestation (i.e., 
plantation of trees in areas without previous tree cover) 
represents another driver that promotes biological invasions 
(Ramprasad et al., 2020). Forest invasion research lags 
behind that of grasslands and wetlands (Nunez-Mir et al., 
2017), and temperate and especially boreal forests tend to 
be remote, making the early stages of biological invasions 
difficult to monitor (Liebhold et al., 2017). As a result, the 
colonization of temperate and boreal forests by alien plants 
is likely much greater than currently reflected in the literature 
(P. H. Martin et al., 2009).

Status

In the Northern Hemisphere, North American deciduous 
forests have a larger number of alien plant species than 
those of Europe and Asia (Fridley, 2013; Heberling et al., 
2017), including a substantial number of alien shrubs, 
lianas, and small trees introduced as ornamentals (Fridley, 
2008). In contrast, the most negatively impactful alien 
plants in European temperate forests are trees (Chapter 4, 
section 4 .3 .2 .1; Campagnaro et al., 2018; Essl et al., 2011; 
Langmaier & Lapin, 2020), many of which were intentionally 
introduced for timber production or forest reclamation (e.g., 
Prunus serotina (black cherry; Closset-Kopp et al., 2007), 
Quercus rubra (northern red oak; Major et al., 2013), Robinia 
pseudoacacia (black locust; Vítková et al., 2017)), and 
woody species are the most numerous species in forest 
understory (V. Wagner et al., 2017). Deciduous forests of 
East Asia, which tend to have higher levels of native species 
richness than other temperate forests (Qian & Ricklefs, 
2000), remain relatively uninvaded (B. Auld et al., 2003; 
Fridley, 2013; but see Wavrek et al., 2017); further, woody 

species in general are strongly under-represented in the 
alien floras of China (Axmacher & Sang, 2013; Weber et 
al., 2008), Korea (Heberling et al., 2017), Japan (B. Auld 
et al., 2003), and the Russian Far East (Kozhevnikov & 
Kozhevnikova, 2011). Boreal forests across the northern 
hemisphere are among the least invaded forest types 
outside the tropics (Leostrin & Pergl, 2021; Sanderson et 
al., 2012); however, climate change is widely expected to 
accelerate understory plant invasions (Mulder & Spellman, 
2019; Chapter 3, section 3 .3 .4), and many fast-growing 
herbaceous alien species are already disrupting native 
tree regeneration in forest gaps (e.g., Cirsium arvense 
(creeping thistle); Humber & Hermanutz, 2011). In European 
(deciduous) forests, 386 alien plant species were recorded 
in forest understory and the most common, Impatiens 
parviflora (small balsam), was recorded in 21 per cent of 
sampled plots (V. Wagner et al., 2017). Plant invasions of 
forests of temperate South America remain understudied 
but there is some evidence that North American plantation 
conifers (e.g., Pinus contorta (lodgepole pine), Pseudotsuga 
menziesii (Douglas-fir)) are able to establish in native 
evergreen forests (Pauchard & Alaback, 2004; Peña et 
al., 2008; Simberloff et al., 2009), along with herbaceous 
species such as Prunella vulgaris (self-heal; Godoy et al., 
2011). Plantation conifers (e.g., Pinus radiata (radiata pine)) 
are also an increasing concern in dry eucalypt forests of 
Australia (M. C. Williams & Wardle, 2005).

Data and knowledge gaps

Although alien plant lists are increasingly available for 
regions where forest invasions are understudied, including 
Turkey (Akbulut & Karaköse, 2018; Yazlık et al., 2018), Iran 
(Sohrabi et al., 2021), and Siberia (Vinogradova et al., 2018), 
the richness and abundance of invasive alien plants specific 
to temperate forested habitats remains unknown for many 
regions outside North America and Europe (Heberling et 
al., 2017). One of the key knowledge gaps is the role of 
shade tolerance in alien species establishment: many alien 
plants establish following disturbance and persist under 
a closed canopy, but relatively few alien plants can recruit 
into intact temperate and boreal forests (P. H. Martin et al., 
2009; V. Wagner et al., 2021). A priority of future research is 
to understand the interplay of disturbance, climate change, 
and biological invasions (Chapter 3, section 3 .3 .4) in 
altering the trajectory of native forest stands to what will 
likely become novel communities of mixed native and alien 
species (Chmura, 2020).

2.5.2.3 Mediterranean forests, 
woodlands and scrub 

Trends 

Although no comprehensive analysis of the trends of alien 
species for Mediterranean ecoregions (Mediterranean Basin, 



THE THEMATIC ASSESSMENT REPORT ON INVASIVE ALIEN SPECIES AND THEIR CONTROL

166

South Africa, North America, South America and Australia) 
exists, it seems likely that the number of alien species 
increases as observed for other regions. As with other 
units of analysis, increases in the number of alien species 
and rates of new records results not only from increased 
transport of species (e.g., trade, human population, spread, 
tourism; M. C. Jackson & Grey, 2013), but also from 
increasing wildfires (e.g., Keeley et al., 2005), increased 
sampling intensity (both in the field and for bibliographic 
searches) and greater awareness of invasive alien species 
(L. Henderson & Wilson, 2017). Some regions and taxa 
have recently shown a deceleration in new introductions as 
a result of successful invasive alien species management 
or national and transnational regulations (European Union, 
2014; Murray & Phillips, 2012). This is the case with, for 
example, birds in the Iberian Peninsula (Abellan et al., 
2016), plants and terrestrial vertebrates in Chile (Fuentes 
et al., 2020), and invasive plants in Australia (Murray & 
Phillips, 2012).

In South Africa, the South African Plant Invaders Atlas 
reports a general increase in both the numbers of alien plant 
species and total area occupied (L. Henderson, 2007). While 
the rate of spread of alien plants decreased in some cases 
and even contracted in a few cases as a result of classical 
biocontrol, overall, 172 new alien plant species emerged 
between 2006 and 2016 and those already established 
expanded their ranges (L. Henderson & Wilson, 2017). An 
increase in alien species numbers in the Mediterranean 
parts of the country, due to horticulture and floriculture, is 
reported; the area of fynbos in South Africa is referred to 
as one the most heavily invaded biomes in the country (L. 
Henderson, 1998; B. W. van Wilgen, 2018).

Some countries in the Mediterranean Basin (e.g., Portugal) 
have good records of temporal trends of plant species 
dating back to 1500. A steady increase in alien species 
numbers occurred over time with an acceleration in the 
introduction of new species at late nineteenth century, some 
deceleration between 1930–1940 and a new acceleration at 
least up to 2018 (Almeida, 2018; Almeida & Freitas, 2001). 
Other countries in the Mediterranean Basin, such as Albania 
(Barina et al., 2014), experienced accelerated introductions 
later during the mid-twentieth century with few alien species 
reported before that time.

From 1500 to 1903 more populations of alien birds were 
introduced to the Mediterranean parts of South Africa, 
Australia, California, and fewer to Chile and the north-
western countries of the Mediterranean Basin. By the end 
of the twentieth century, this trend exhibited some changes 
with more bird populations introduced in the north-western 
countries of the Mediterranean Basin (with a hotspot in 
Spain), in Western Cape (South Africa) and California 
(United States) (E. E. Dyer, Cassey, et al., 2017). At least 
in the Iberian Peninsula, the pronounced increase after 

1955 – particularly steep after the 1980s – was followed by 
a decrease by 2005, possibly explained by the ban of wild-
caught birds in Spain after the avian flu and regulations to 
reduce invasion risk (Abellan et al., 2016).

Amphibians and reptiles were reported as introduced 
to Mediterranean areas only after 1800, with increasing 
numbers of records of new established alien species after 
mid-1900 (Capinha et al., 2017). 

In California, United States, alien terrestrial 
macroinvertebrates have been established since 1700, with 
many species (ca. 39 per cent) introduced before 1930. A 
more detailed analysis from 1935 – 2010 demonstrates the 
regular detection of new species of alien arthropods across 
the 75 years in three distinct phases: higher mean values 
early in this period, decreased detections 1970 to late 
1980s, followed by an increase (Dowell et al., 2016).

Status 

Comprehensive information about terrestrial alien vascular 
plants is available for most countries with a Mediterranean 
climate (e.g., Almeida, 2018; Arianoutsou et al., 2010; 
Barina et al., 2014; Fuentes et al., 2020; Galasso et al., 
2018; Meddour et al., 2020; B. W. van Wilgen, 2018), and 
most of the checklists provide information about the status 
of the species (Pyšek, Pergl, et al., 2017 for summary data 
on established alien plants). 

All the Mediterranean regions share a higher percentage 
of alien plant species with southwest Australia than with 
any other region. Chile and the Mediterranean Basin share 
comparatively fewer alien plant species with the other 
regions (Arianoutsou et al., 2013). Common invasive plants 
in and from Mediterranean areas are Oxalis pes-caprae 
(Bermuda buttercup), Acacia spp., Carpobrotus edulis 
(hottentot fig), Ulex spp. (Gorse), Cytisus spp., and Hakea 
spp. (Pincushion tree). Most Mediterranean areas also share 
alien species that have originated from different climates, 
e.g., Ailanthus altissima (tree-of-heaven), Conyza spp., and 
Agave americana (century plant).

Publications on alien plants are more common than for 
other taxonomic groups (e.g., Chile; Fuentes et al., 2020; 
N. J. van Wilgen et al., 2018; IUCN SSC Invasive Species 
Specialist Group (ISSG)). In Mediterranean areas, alien 
bird species richness is high in some regions of California, 
western parts of the Mediterranean basin, South Africa, 
and Australia (E. E. Dyer, Cassey, et al., 2017). Alien reptiles 
and amphibians (Capinha et al., 2017) present in the five 
global Mediterranean areas are more numerous in terms 
of species numbers in California and Spain, and have few 
documented species (or are even absent) in northern Africa 
and Eastern Europe. Terrestrial invertebrates also show high 
numbers of alien species, for example, in California (over 
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1,600 species, approximately 85 per cent insects) (Dowell 
et al., 2016). 

Data and knowledge gaps 

In countries covering multiple units of analysis, the trends 
and status for alien species in the Mediterranean zone is 
mostly not specifically described. Some countries with 
Mediterranean climates, particularly Syria, Lebanon, Malta, 
and Macedonia, have not yet published comprehensive 
inventories of alien species. Detailed distribution maps 
of specific alien species in Mediterranean areas are not 
frequently found.

2.5.2.4 Arctic and mountain tundra 

Trends 

Early introductions of alien plant and vertebrate species 
in polar regions were largely intentional (e.g., revegetation 
of industrial sites and fur farming (Forbes & Jefferies, 
1999; Usher, 2005), while current introductions are often 
unintentional (Tolvanen & Kangas, 2016; Wasowicz et al., 
2020). Future increases in alien species richness across 
taxonomic groups for both Arctic and mountain tundra 
regions is expected due to climate change and increasing 
anthropogenic activity including deliberate ornamental plant 
introduction related to tourism development or unintentional 
introductions along roads, trails, and mineral extraction sites 
(Chapter 3, Carboni et al., 2018; Nielsen & Wall, 2013; 
Normand et al., 2013; Petitpierre et al., 2016; Solovjova, 
2019; C.-J. Wang et al., 2017; Ware et al., 2016; Wasowicz 
et al., 2013). However, a modelling study on the 100 
world’s worst invaders projected no increase in suitability 
of tundra regions to invasive alien species until 2100 as 
climatic conditions for some of these species might become 
too extreme in the future, or as ongoing degradation and 
land use change might render current habitats unsuitable 
(Bellard, Thuiller, et al., 2013). Invasive alien disease risks 
are likely to increase in the future under climate change, 
with potential increases in disease transmission between 
domestic species and Arctic wildlife, as well as through 
increased survival probability and range expansion of 
introduced disease vectors or increased host susceptibility 
under climate change (Bradley et al., 2005; Dudley et al., 
2015; Kutz et al., 2004; Waits et al., 2018).

Similarly, mountain regions have been mostly spared 
from biological invasions because of low anthropogenic 
pressure and harsh climates (Kueffer et al., 2013; Pauchard 
et al., 2009; Petitpierre et al., 2016). However, many high 
mountain regions globally have increasing alien species 
richness, especially for plants (Alexander et al., 2016; 
Becker et al., 2005; Carboni et al., 2018; Pauchard et al., 
2009; Pickering et al., 2007; Williamson & Fitter, 1996). 
Future alien species colonizers are expected to have wide 

climatic niches (like most current invasive alien species) 
and will likely increase their range sizes from low elevations 
via an upward expansion of their current range limits, with 
expansion rates for alien plants being twice as high as for 
native plant species (Alexander et al., 2011, 2016; Carboni 
et al., 2018; Dainese et al., 2017). Direct introductions of 
more specialized (i.e., cold adapted) alien species into high 
elevation environments will also likely increase because of 
increased tourism and targeted introduction for ornamental 
purposes (Alexander et al., 2016; Carboni et al., 2018; 
Godde et al., 2000; Kueffer et al., 2013; McDougall et al., 
2005). Genetic adaptability of alien species at range margins 
resulting in the colonization of cooler sites will likely further 
increase the risk of future invasions (Alexander, 2010). 
Bryophytes are common alien species in cold environments 
(Rozzi et al., 2008) and the likelihood of alien bryophytes 
invading high mountain and Arctic tundra ecosystems 
is assumed to be high (Essl et al., 2013; Pauchard et 
al., 2016).

Status

Established alien species richness across taxonomic groups 
decreases towards higher latitudes (Capinha et al., 2017; 
E. E. Dyer, Cassey, et al., 2017; Essl et al., 2013; Pyšek 
& Richardson, 2006; Qian, 2008; Sax, 2001) and high 
elevations (M. Ahmad et al., 2018; Alexander et al., 2011; 
Q. Guo et al., 2021; Haider et al., 2010; Kalwij et al., 2008; 
Khuroo et al., 2011; Marini et al., 2013; Western & Juvik, 
1983), but exceptions exist (Paiaro et al., 2011; Rosa, 
2020). Arctic regions have been identified as coldspots for 
alien species richness across different taxonomic groups 
(e.g., plants, birds, mammals, spiders, ants, amphibians, 
reptiles, fishes), especially Greenland, northern North 
America and northern Europe (Dawson et al., 2017). Alaska 
and northern Central Asia have higher alien richness of 
several taxonomic groups, but these patterns might be 
influenced by different sampling intensity and data availability 
across regions (Dawson et al., 2017). In mountain and arctic 
tundra, alien plants are generally found in anthropogenically 
disturbed sites and along transportation infrastructure 
routes (Alexander et al., 2011, 2016; Forbes & Jefferies, 
1999; Haider et al., 2010; Kalwij et al., 2008; Khuroo et 
al., 2011), and their richness decreases with increasing 
distance from these structures (Arteaga et al., 2009; Haider 
et al., 2022; Pauchard & Alaback, 2004; Seipel et al., 
2012). Successful invaders are mainly graminoid or weedy 
species (Alexander et al., 2016; Carey et al., 2016; Forbes 
& Jefferies, 1999; Wasowicz et al., 2020) however, primary 
invasion along mountain roads tends to promote longer 
lived species (McDougall et al., 2018). Species richness 
increases across taxonomic groups are mainly linked to 
invasions from lower elevations and latitudes under climate 
change, and increasing anthropogenic pressure associated 
with intentional introductions (Alexander, 2010; Bertelsmeier 
et al., 2015; Carboni et al., 2018; Dainese et al., 2017; 
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Godde et al., 2000; Greve et al., 2017; Kueffer et al., 2013; 
McDougall et al., 2005; Parkinson & Butler, 2005; Wasowicz 
et al., 2013, 2020) but some invasive alien species might 
also lose suitable habitats when the climatic conditions 
become too extreme in the future (Bellard, Thuiller, et 
al., 2013).

Data and knowledge gaps 

No dedicated gap analysis is currently available for Arctic 
and mountain tundra regions. However, the same regional 
gaps emerge across taxonomic groups as for global alien 
richness datasets. In particular, data is missing for most 
taxonomic groups in the northern part of Asia (Dawson 
et al., 2017) and research efforts are generally less 
intensive for animals and plants at higher latitudes (Lenoir 
& Svenning, 2015). Given that animals and plants are two 
of the most studied taxonomic groups, this is likely also 
true for other taxonomic groups such as mosses, lichens, 
and microorganisms.

2.5.2.5 Tropical and subtropical 
grasslands

In the Millennium Ecosystem Assessment (2005) tropical 
grasslands and savannas were regarded as less affected 
by plant invasions relative to other biomes, but there is 
an increasing trend in both distribution and alien species 
richness in these biomes. Thus, although invasive alien 
species have only recently been considered as a main 
threat to biodiversity conservation and functioning of tropical 
grasslands and savannas, they are likely to become much 
more widespread in the future. Within the grassland-
savanna biome, frequently seasonally flooded river and 
stream banks are generally substantially more vulnerable to 
plant invasions than areas away from rivers (Pyšek, Hulme, 
et al., 2020; D. M. Richardson et al., 2007), but with notable 
exceptions. 

The current low incidence and impact of alien plants in 
savannas relative to some other terrestrial biomes may be 
because disturbance, which generally favours invasions, is 
fundamental to savanna functioning (Chapter 4, section 
4 .3 .2 .1). Savannas are resilient to changes in disturbance 
regimes (Harrison & Shackleton, 1999; Walker & Noy-
Meir, 1982), making them relatively resistant to biological 
invasions in some areas (Foxcroft, Richardson, et al., 
2010). Drivers facilitating plant invasions in savannas 
include herbivore presence, residence time, intentional 
introductions for pasture improvements, the introduced 
species’ physiology, and anthropogenic disturbance 
(Foxcroft, Richardson, et al., 2010). While fire regimes may 
play a role in preventing alien plant invasions in fire prone 
systems, the increasing invasion of cacti (less affected by 
fire in areas denuded of grass cover) in African savannas, 
and fire adapted African grasses in northern Australian and 

southern American savanna grasslands are overcoming 
this barrier.

Trends

Although no study about trends of alien species in tropical 
and sub-tropical grasslands yet exists, it seems likely that 
the number of alien species are increasing likewise to 
other regions worldwide such as temperate grasslands 
(section 2 .5 .2 .6).

Status

Foxcroft, Richardson, et al. (2010) suggested that African 
savannas are less invaded than savannas in the Neotropics 
and northern Australia, where alien African grasses 
especially have had significant impacts, due to (i) lower rates 
of intentional plant introductions to that continent, (ii) the 
role of large mammalian herbivores in African savannas, (iii) 
historical and biogeographical issues relating to the regions 
of origin of alien species, and (iv) the adaptation of African 
systems to fire. Moreover, many forms of anthropogenic 
land use over a long period (Bourlière & Hadley, 1983), 
together with high levels of frequent disturbances, may have 
resulted in alien plants being not yet very widespread or 
common in African savannas (Foxcroft, Richardson, et al., 
2010). In Southern Africa, L. Henderson and Wells (1986) 
listed 583 established alien plants for tropical savannas, of 
which 151 were known to be particularly impactful invasive 
alien species, and L. Henderson (2007) reported 48 alien 
species for the savanna biome of South Africa alone. 
Lantana camara (lantana), Chromolaena odorata (Siam 
weed) and Melia azedarach (Chinaberry) were the most 
prominent invasive alien species, followed by Solanum 
mauritianum (tobacco tree), Acacia mearnsii (black wattle), 
Opuntia ficus-indica (prickly pear), Ricinus communis (castor 
bean), Psidium guajava (guava), and Jacaranda mimosifolia 
(jacaranda). Examples of invasive alien species in protected 
areas include Chromolaena odorata in Hluluwe-Imfolozi 
(Macdonald, 1983) and Opuntia stricta (erect prickly 
pear) in Kruger National Park (Foxcroft et al., 2004). More 
recent evidence from East Africa suggests these trends of 
savannas being less invaded are reversing and biological 
invasions are rapidly increasing. While the Serengeti-Mara 
ecosystem in East Africa is relatively free of widespread and 
abundant invasive alien plants, with a few exceptions, Witt 
et al. (2017) report 51 established alien plant species, with 
21 of these recorded as invasive. They consider Parthenium 
hysterophorus (parthenium weed), Opuntia stricta, 
Tithonia diversifolia (Mexican sunflower), Lantana camara, 
Chromolaena odorata, and Prosopis juliflora (mesquite) to 
pose the greatest threats. In central Kenya, Laikipia County, 
which comprises grasslands, savanna woodland and forest, 
145 alien plant species recorded, 67 and 37 were already 
established or invasive, respectively (Witt et al., 2020). 
Widespread species in the county included Opuntia stricta, 
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Opuntia ficus-indica, Austrocylindropuntia subulata (Eve’s 
needle cactus), and other succulents (Witt et al., 2020).

“New World” neotropical savannas are locally highly 
invaded mostly by African C4 grasses introduced for forage 
quality improvement (e.g., Hyparrhenia rufa (jragua grass), 
Urochloa eminii (signal grass), Melinis minutiflora (molasses 
grass), Andropogon gayanus (tambuki grass), Panicum 
maximum (Guinea grass); Rejmánek et al., 2013). In Brazil, 
this practice was encouraged into the late 1990s (Pivello 
et al., 1999). In Colombia, Venezuela, and Brazil, about 4 
million km2 were transformed to pasture by using, to a large 
extent, African C4 grasses (D. G. Williams & Baruch, 2000). 
Gorgone-Barbosa et al. (2015) also reported Urochloa 
brizantha (palisadegrass) to be an aggressive invasive alien 
grass in the Brazilian Cerrado. Trees are, however, also 
invasive in grassland savanna in São Paulo State, Brazil, 
where De Abreu and Durigan (2011) reported that Pinus 
elliottii (slash pine) has completely altered the structure of 
grassland savannas.

African and European grasses are common alien species 
in Australia (D’Antonio & Vitousek, 1992). Lonsdale (1994) 
reported that 466 alien pasture species were intentionally 
introduced into the savannas of northern Australian and 
many have become invasive (ca.13 per cent). The most 
impactful invasive alien species in Australian tropical 
savannas include Andropogon gayanus (Tambuki grass) 
introduced as a pasture grass in the 1930s, whose invasion 
has led to several-fold increases in the fuel load and fire 
intensity, further promoting this species’ invasion (Rossiter 
et al., 2003). In Kakadu, Mimosa pigra (giant sensitive 
plant), Hymenachne amplexicaulis (hymenachne), Urochloa 
mutica (para grass) (Setterfield et al., 2013), Cenchrus 
ciliaris (buffel grass), Cenchrus polystachios (mission grass), 
Themeda quadrivalvis (grader grass) are other fire-regime 
altering African grasses, while Vachellia nilotica (gum arabic 
tree) from Africa, Cryptostegia grandiflora (rubber vine) 
from Madagascar, Jatropha gossypiifolia (bellyache bush) 
from Mesoamerica, Lantana camara (lantana) from the 
Neotropics, Mimosa pigra from South America, or Prosopis 
species (mesquite) from Americas, and Ziziphus mauritiana 
(jujube) from India are examples of woody species invading 
Australian savannas. There are also several cactus species 
introduced from Meso- and South America (Foxcroft, 
Richardson, et al., 2010). Ratnam et al. (2019) also shows 
that across large stretches of fine- and broad-leaved 
savannas in Asia, Lantana camara and Prosopis juliflora 
are widespread, expanding widely over the past three to 
four decades.

Data and knowledge gaps

Tropical and subtropical savannas and grasslands are 
in regions understudied compared to other regions of 
the world making information about alien species scarce 

and comprehensive studies lacking. It therefore remains 
unclear to what degree the often-low numbers of reported 
established alien species in these ecosystems represent 
low research effort or true numbers. However, given the low 
numbers of available studies, it seems likely that numbers of 
established alien species are likely to be considerably higher 
than reported.

2.5.2.6 Temperate grasslands

Temperate grasslands once covered 5–10 per cent of the 
terrestrial surface (Dixon et al., 2014; White et al., 2000), 
yet now rank among the most threatened biomes globally 
due to land conversion and degradation (Hoekstra et al., 
2004; IPBES, 2019a). In North America, ca. 70 per cent of 
the Great Plains prairie have been converted to cropland 
and to a lesser degree to pastures and human settlements. 
Intensive grazing and agricultural usage have transformed 
many Pampas areas of South America. Conversion is 
also pronounced in some parts of Central Asia (including 
Kazakhstan, Kyrgyzstan, Russia, Tajikistan; V. Wagner et al., 
2020), but less so in highly continental Asia (Mongolia and 
China) where the world’s largest temperate grasslands are 
still found (Wesche et al., 2016).

Trends

The ongoing intensifying anthropogenic pressures on 
grassland ecosystems including climate change will likely 
further accelerate the establishment of new alien species in 
temperate grasslands (Chapter 3, section 3 .3 .4; Catford & 
Jones, 2019).

Although comparative studies are lacking, the North 
American prairie appears to be the temperate grassland 
region most impacted by alien biota. The history of alien 
species introductions is linked to the arrival and spread 
of European settlers in the nineteenth century, and 
subsequent land conversion (Seastedt & Pyšek, 2011), 
associated with plant introductions having far-reaching 
consequences such as the conversion of prairies to 
annual grasslands dominated by Eurasian grasses such as 
Bromus tectorum (downy brome) (Mack, 1989). Intentional 
introductions have played a key role in this trend (Lehan et 
al., 2013; Mack & Erneberg, 2002). For the entire United 
States, the cumulative number of introduced insect, mite 
(Sailer, 1983), and bird (Temple, 1992) species has grown 
consistently since the 1800s. In Kansas, a state that falls 
entirely within the temperate grassland biome, the number 
of introduced vascular plants found outside of cultivation 
has been steadily increasing since the late 1800s but has 
slowed in the last century (Woods et al., 2005). A similar 
increase-and-decline pattern was reported for rangelands 
of Washington, Oregon, Idaho, Montana, and Wyoming 
(testimony of Peter Reich cited in (Mitchell, 2000) and is in 
line with reports for California (Rejmánek & Randall, 2004) 
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and the United States as a whole (Seebens, Blackburn, et 
al., 2017). 

In South American grasslands, the number of records of 
alien plants (C. R. Fonseca et al., 2013), invertebrates (De 
Francesco & Lagiglia, 2007), birds (Zufiaurre et al., 2016) 
and vertebrates are still increasing. However, formal trend 
analyses are lacking as are comprehensive reviews or 
summary data.

Review data on trends are missing for the Eurasian steppe 
biome. Although new plant species continue to colonize 
even highly continental Asia (Urgamal et al., 2014), they 
remain mainly confined to ruderal and otherwise disturbed 
habitats, while frequency and abundance in natural 
grasslands remains low. For the extensive grassland 
regions of Mongolia and China, an increase towards a 
higher share of C4 plants in the otherwise C3-dominated 
vegetation has been described (Wittmer et al., 2010). This 
is, however, attributed to a higher share of native species 
(Cleistogenes spp. and Amaranthaceae weeds) and may 
partly be triggered by warmer climate. In the middle of the 
last century, almost all introduced plants in Kazakhstan 
were either cultivated or confined to ruderal plants, with 
none recorded as colonizing temperate steppe grasslands 
(Pavlov, 1956). Compared to other continents, the trend 
in continental Asia might indicate a lower introduction 
pressure, harsher climate conditions, or time lag compared 
to temperate grasslands in other continents.

Status 

The total number of organisms introduced to temperate 
grasslands worldwide has never been assessed thoroughly. 
A comparison of the proportion of alien species among 
all species across habitats revealed that temperate 
grasslands exhibit intermediate levels of invasions with lower 
proportions than urban or agricultural habitats but higher 
proportions than wetlands or planted forests (Catford & 
Jones, 2019). In states that lie entirely within the Great Plains 
of the United States (Kansas, Nebraska, North Dakota, 
Oklahoma, South Dakota), 790 alien vascular taxa (14.6 per 
cent of the flora) are found outside of cultivation, with forbs 
and herbs comprising the largest group (553 taxa, 70 per 
cent of the alien flora) (data extracted from the PLANTS 
Database; USDA, NRCS, 2021). Introduced plant species 
have become so common in the prairies that grasslands 
lacking any alien species are rare (S. DeKeyser et al., 2010; 
Larson et al., 2001). Examples of invasive alien species 
include perennial C3 (e.g., Bromus inermis (awnless brome), 
Poa angustifolia (Kentucky bluegrass); E. S. DeKeyser et 
al., 2015; Otfinowski et al., 2007) and C4 (Bothriochloa 
ischaemum (yellow bluestem), Dichanthium sericeum (silky 
bluegrass); Mittelhauser et al., 2011; Simmons et al., 2007) 
grasses introduced as forage grasses, as well as annual 
grasses (e.g., Bromus tectorum (downy brome); Ashton et 

al., 2016) and biennial and perennial forbs (e.g., Centaurea 
stoebe subsp. australis (spotted knapweed), Euphorbia 
virgata (leafy spurge); LeJeune & Seastedt, 2001; Dunn, 
1985). Although the rate of introduction appears to have 
slowed in North American temperate grasslands, the 
regional expansion and range infilling of already introduced 
alien species is ongoing (e.g., Ventenata dubia (North Africa 
grass); Wallace et al., 2015).

In the central Great Plains, 14 alien earthworm species 
occur in the wild (J. W. Reynolds, 2016). Furthermore, Sus 
scrofa (feral pig) – descendants from stock introduced 
from Europe – have become invasive in the southern and 
northern Great Plains (Brook & van Beest, 2014; Reeves 
et al., 2021). Equus caballus (horse) have escaped and 
colonized some areas of Australia and the Great Plains, 
though are highly restricted in their current range for the 
latter (Nimmo & Miller, 2007; Reeves et al., 2021). Although 
trees are scarce in the prairie, some invasive alien species, 
such as Agrilus planipennis (emerald ash borer; insect), 
Adelges piceae (balsam woolly adelgid; insect), and 
Ophiostoma species (Dutch elm disease; fungi; Reeves et 
al., 2021) can damage trees that grow locally. 

In South America, around 350 alien plant species have 
been recorded for the Pampa regions, of which ca. 
50 occur in natural and semi-natural grasslands (C. R. 
Fonseca et al., 2013). In Brazil, the Pampa region had the 
highest proportion of established alien species relative 
to total richness and compared to other natural regions 
(114 alien established alien species out of 1,685 species 
in total; Zenni, 2015). Invasive alien species are particularly 
common in the Pampas of Argentina, but also are abundant 
and problematic in other temperate grasslands of South 
America. Pampas are subject to invasion by alien shrubs 
from Eurasia (Mazía et al., 2010; Zalba & Amodeo, 2015) as 
well as by herbaceous alien species (Dresseno et al., 2018; 
Hierro et al., 2011). Similar to North America, the latter 
include alien species that have been introduced as pasture 
grasses, especially from Africa (Eragrostis curvula (weeping 
lovegrass), Eragrostis lehmanniana (Lehmann lovegrass), 
Panicum coloratum (klein grass; D. G. Williams & Baruch, 
2000)), and herbs (Tognetti & Chaneton, 2012). Introduced 
alien pine species have been planted on a large scale in the 
high-altitudinal temperate grasslands of the Páramo and are 
showing signs of escape and spread (Hofstede et al., 2002; 
van Wesenbeeck et al., 2003). 

In contrast, numbers of alien species are low in the harsh 
continental grassland regions of Asia. Several of the most 
important alien grasses in North American prairies originate 
from steppes and related grasslands (Agropyron cristatum 
(crested wheatgrass), Bromus tectorum (downy brome)), 
yet the continental climates of central Eurasia are less 
invaded. Mongolia, with its ca. 1 million km² of steppes, 
has less than 100 alien plant species (out of ca. 3200; 
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Urgamal et al., 2014). None of these 100 alien plant species 
achieved high frequency or dominance in steppes, and the 
few studies on invasive plants from northern China also 
refer to heavily disturbed areas, fields or sown grasslands 
rather than natural steppes (Guan et al., 2019; Xun et 
al., 2017). The same holds true for the extensive steppes 
of Kazakhstan and surrounding environments, while the 
steppes of Russia and Europe are heavily converted (Kamp 
et al., 2016; Smelansky & Tishkov, 2012). The remaining 
steppes of these regions often have altered plant community 
compositions, but the species are overwhelmingly native 
to the regions. Alien plants are typically confined to arable 
fields, and ruderal and disturbed areas (Sukhorukov, 2011; 
Vakhlamova et al., 2016).

Equus caballus (horse; Zalba & Loydi, 2014) and Sus 
scrofa (feral pig; Caruso et al., 2018) are known to occur 
in South American grasslands. Several alien bird species 
have established in Pampas such as Myiopsitta monachus 
(monk parakeet; Bucher & Aramburú, 2014) and Sturnus 
vulgaris (common starling; Zufiaurre et al., 2016). Data on 
invertebrates are more anecdotal, yet invasions have been 
documented for Rumina decollata (decollate snail; De 
Francesco & Lagiglia, 2007).

Data and knowledge gaps 

Alien plant invasions in temperate grasslands in the 
Americas are reasonably well documented in the scientific 
literature. By comparison, the frequency and impact of 
other alien taxonomic groups, such as earthworms, remain 
understudied in these regions. Numbers of documented 
alien species from the steppes of inner Asia are low and it 
seems likely that records are missing due to low research 
intensity and that higher numbers could be expected, 
particularly in countries of low economic growth. 

Records on alien animal species are incomplete with only 
limited reports available on common invasions in Asia. 
Widespread alien mammals, such as Mus musculus (house 
mouse), are even thought to have large parts of their 
native range in continental Asia (Appenborn et al., 2021). 
Baseline data are available for invertebrates and although far 
from comprehensive.

2.5.2.7 Deserts and xeric shrublands 

Deserts and xeric shrublands correspond, in general, 
to regions with low population densities and several are 
located in countries with low per capita gross domestic 
product. Due to their harsh climate, few alien plants have 
been able to establish in these habitats (Kalusová et al., 
2017). As such, they are expected to harbour fewer alien 
and invasive alien species than other biomes (Dawson et 
al., 2017). On the other hand, the harsh abiotic conditions 
sometimes motivated the introduction of alien species 

capable of surviving in such habitats to ameliorate 
human livelihood.

Trends 

Comparing rates of alien plant species accumulation, 
accounting for area, the accumulation of alien plants 
appears to be slower in deserts and xeric habitats than in 
colder temperate and Mediterranean regions (Pyšek, Pergl, 
et al., 2017). Although these habitats used to be considered 
relatively resistant to alien plant invasion, the recent spread 
of alien species has been observed (Sandquist, 2014). In 
Chinese desert areas, the number of new invasive alien 
species is increasing (Eminniyaz et al., 2017) although this 
finding could also be explained by changing recording 
intensities. Prosopis juliflora (mesquite) was introduced 
to many desert regions starting in the 1850s and is now 
a widespread invader in all regions except Europe and 
Central Asia (Patnaik et al., 2017). Cenchrus ciliaris (buffel 
grass) was widely introduced in the early 1900s for forage 
and pasture and now invades large areas in Australia 
and Americas where it increases wildfire frequency and 
intensity (V. M. Marshall et al., 2012). Camelus dromedarius 
(dromedary camel) were introduced in the 1800s in Australia 
to assist transportation across deserts and later escaped 
and spread (Crowley, 2014).

The number and accumulation of emerging alien species 
worldwide is expected to continue to increase for most 
taxonomic groups and continents, though possibly more 
slowly in deserts and xeric shrubland compared to other 
biomes. Other studies predict that deserts will be unsuitable 
for invasive alien species by 2100 (Bellard, Thuiller, et al., 
2013). Trade and transport in the subtropics (a zonobiome 
overlapping much of deserts and xeric shrublands) is 
expected to be the main driver facilitating biological 
invasions (Essl et al., 2020), although these areas have 
comparatively less trade and transport than other more 
populated regions (subtropics cover approximately 25 per 
cent of the terrestrial surface of the planet but only have 8 
per cent of world population).

Status 

Global analyses (Dawson et al., 2017; Turbelin et al., 2017) 
show some tendency for lower richness of established alien 
species in deserts and xeric shrublands than in temperate 
and Mediterranean biomes, but with some variation among 
regions. The Palearctic deserts in Central Asia and north 
Africa and the Sahara and Afrotropic deserts south of the 
Sahara in Africa and the southern fringe of the Arabian 
Peninsula (with some exceptions, e.g., Southern Africa) 
show relatively low numbers of alien and invasive alien 
species. The Australasian deserts, the Nearctic deserts in 
North America, the Neotropical deserts in South America 
and the Indo-Malay deserts south of the Himalayas tend 
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to harbour higher numbers of established alien species, 
although generally much lower compared to Temperate and 
Mediterranean regions (Dawson et al., 2017; Turbelin et 
al., 2017).

The different taxonomic groups show some differences both 
in numbers of established alien species (many more plants 
than animals) and regionally. The number of established alien 
plants is generally lower in desert areas than in temperate 
and Mediterranean climates (e.g., 119 alien plants in the 
Nama karoo and 75 in the Succulent karoo, both in South 
Africa (B. W. van Wilgen & Wilson, 2018) and 73–83 alien 
plants in several parks of the North American Mojave 
Desert (Abella et al., 2015). In the desert region of Egypt 
only 17 alien species were reported (Shaltout et al., 2016). 
Following European settlement of Australia, numerous 
alien plant species were intentionally introduced for use 
in crops, pastures, gardens, and horticulture, and others 
arrived unintentionally. Many subsequently escaped into 
natural environments and are now considered as “weeds”. 
Of the 54 alien plant species of natural environments of arid 
and semi-arid Australia that are considered here, 27 were 
apparently unintentionally introduced, 20 were intentionally 
introduced, and 7 were probably introduced both 
unintentionally and intentionally. Livestock, including camels 
and their harness, and contaminated seed and hay were 
the most common vectors for unintentional introduction 
(Crowley, 2014; Friedel, 2020).

Established alien birds are absent or present in only low 
number in most desert and xeric habitats of the world, 
with a few exceptions in North American and Southern 
African deserts (B. W. van Wilgen & Wilson, 2018), possibly 
because there were few attempts to intentionally introduce 
alien birds in arid regions (E. E. Dyer, Cassey, et al., 2017). 
The number of established alien freshwater fishes is similar 
in both Australian and African deserts but tends to be 
higher in American and Asian deserts; their occurrences 
are associated with oases, as is the case of at least four 
alien freshwater fish species found in the largest oasis 
in the Mojave Desert (Ash Meadows), in North America 
(Scoppettone et al., 2005). The number of alien reptiles and 
amphibians introduced to deserts and xeric habitats is low 
(mostly below four) compared to other biomes. Regional 
comparisons indicate lower numbers for Palearctic deserts 
in Eurasia north of the Himalayas and in north Africa as well 
as for the Sahara, especially for amphibians (Capinha et 
al., 2017) than other deserts. In Southern African deserts, 
none or only one alien species has been reported (B. W. 
van Wilgen & Wilson, 2018). In a survey of eleven oases in 
the desert regions of Morocco, five alien ant species have 
been recorded spreading across seven oases (A. Taheri 
et al., 2021). Information about alien spiders is missing in 
many regions; in African deserts there are almost no alien 
spider species or they are not studied, but in Australian 
and American deserts, the numbers do not differ much 

from other biomes (Dawson et al., 2017). For other animal 
groups, fungi, and microorganisms, little information was 
available except for the presence of Batrachochytrium 
dendrobatidis (chytrid fungus) associated with declines and 
extinctions of amphibians worldwide, in oasis of the Baja 
California Sur Desert, in Mexico (Luja et al., 2012).

Data and knowledge gaps 

Deserts and xeric shrublands are less well-studied relative 
to other biomes (e.g., Crystal-Ornelas & Lockwood, 2020; 
Florencio et al., 2019). Global studies provide information 
on the status of alien species in the different desert and 
xeric shrubland regions, but information on temporal trends 
is often incomplete or even absent for most deserts. Most 
available studies focus on plants and animals (but not 
arthropods) and there were almost no studies on fungi and 
microorganisms (Pyšek, Hulme, et al., 2020). There is more 
information for the deserts of North America, but for other 
less well-surveyed regions, for example Africa (except South 
Africa) and Asia, information is scarce and limited to few 
species. The lack of information is particularly concerning 
because arid areas and desertification may be expected to 
increase in the future.

2.5.2.8 Cryosphere 

Trends

The cryosphere has been less affected by alien species 
compared to other regions. The low number of reported 
alien species from the cryosphere have multiple reasons: 
The cryosphere is difficult to access, anthropogenic 
pressures have been low (Bennett et al., 2015; Chan 
et al., 2019; Galera et al., 2018; McGeoch et al., 2015; 
Ruiz & Hewitt, 2009; Vermeij & Roopnarine, 2008) and 
inhospitable environments (e.g., low nutrient soils, freezing 
temperatures, high UV levels) do not favour establishment 
of alien species. Although the Arctic and Antarctica differ, 
climate change and increased human activities (tourism 
and research) are enhancing introductions in both regions 
(Chapter 3, Box 3 .4; Bartlett et al., 2020; Bender et al., 
2016; Cárdenas et al., 2020; Chan et al., 2019; Chown et 
al., 2012; Chwedorzewska et al., 2015; Duffy et al., 2017; 
Frenot et al., 2005; K. A. Hughes, Cowan, et al., 2015; K. 
A. Hughes, Pertierra, et al., 2015; Huiskes et al., 2014; 
McCarthy et al., 2019; McGeoch et al., 2015; Miller & Ruiz, 
2014; Ricciardi et al., 2017; Wasowicz et al., 2020). Plants 
(seeds, fragments and other propagules) and invertebrates 
(e.g., springtails) are introduced on clothing and personal 
equipment of tourists, ships, and aircraft personnel, as well 
as associated with packing materials (Chown et al., 2012; 
Huiskes et al., 2014), vehicles (K. A. Hughes et al., 2010), 
and fresh food imports (K. A. Hughes et al., 2011). In ten 
years of surveillance (2007-2017; Glossary) at the Scott 
Base in the Ross Sea region of continental Antarctica, 68 
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invertebrate species (15 alien within the broader Antarctic 
region) were intercepted on food (60 per cent), clothing and 
equipment (11 per cent), aircraft and cargo (11 per cent), 
and packaging material (11 per cent) (Newman et al., 2018). 
During 2007-2008 in Antarctica, over 20 alien lichens and 
fungi were intercepted in packaging, foodstuffs, and timber 
(Osyczka, 2010; Osyczka et al., 2012). Similarly, 1,019 
seeds were found under the footwear of 259 travellers to 
Svalbard during summer 2008 alone (Ware et al., 2012), 
while the seeds of eight alien plant species were reported 
in the topsoil of Fildes Peninsula, King George Island 
(Antarctica), in areas intensively frequented by humans 
(Fuentes-Lillo et al., 2017). 

In the Arctic marine environment, the rate of reported alien 
species rose sharply from the end of 1990 concomitantly 
with increased research efforts in the region. Biofouling on 
commercial ships is not considered an important pathway 
for marine alien species for the cryosphere due to the low 
rate of species survival (but see Chan et al., 2019), while 
biofouling on other vessel types (e.g., leisure crafts, fishing 
vessels, floating platforms) could become relevant in the 
future for the recent increase in tourism, fisheries, and oil 
and gas development in the Arctic (Chan et al., 2019). 
Species were mainly introduced by ballast water followed 
by natural spread from neighbouring areas where the 
species were first introduced, and by aquaculture activities 
(e.g., Paralithodes camtschaticus (red king crab); Chan et 
al., 2019; Orlov & Ivanov, 1978). Similarly, in the Antarctic 
marine environment, species were likely introduced by 
vessels (three by hull fouling, one by ballast water), with 
the first recorded alien species (a bryozoan) dating back to 
1960, followed in 1986 by a crab, and in 1996 by a tunicate 
and a hydroid; the most recent introduction (a mollusc) 
was recorded in 2019, although it is likely that this species 
has subsequently gone extinct (Cárdenas et al., 2020; 
McCarthy et al., 2019). It is important to note that there 
is no evidence that any of these species (bryozoan, crab, 
tunicate, hydroid) are established in the Antarctic (McCarthy 
et al., 2019). Terrestrial alien plants in the cryosphere consist 
of predominantly herbaceous species, mostly introduced 
inadvertently in association with soils or imported fodder 
for domestic animals (Chwedorzewska et al., 2015; Frenot 
et al., 2005; Wasowicz et al., 2020). In the Arctic, there are 
some records of alien neophyte plants reported at the end 
of the nineteenth century, but their number increased in the 
1950s and 1970s with species mostly introduced by seed 
contamination and transport on vehicles (Wasowicz et al., 
2020). In continental Antarctica, few alien plants have been 
introduced since the 1950s (e.g., Poa pratensis (smooth 
meadow-grass) was introduced unintentionally during 
tree transplantation experiments in the 1950s and was 
eradicated in 2015 (Pertierra et al., 2017). 

A comprehensive review on alien invertebrates is missing for 
the Arctic, but detailed data are reported for the Svalbard 

archipelago (e.g., Wieczorek & Chłond, 2019), with 32 alien 
invertebrates recorded since 1928 with an increase after 
1980s, mostly due to soil importation (Coulson, 2015). 
In continental Antarctica, alien invertebrates, such as the 
springtail Hypogastrura viatical (springtail), were reported 
from the 1940s onwards (Hack, 1949; K. A. Hughes, 
Pertierra, et al., 2015). In terms of alien vertebrates in 
the Arctic, four fishes (salmonids) were translocated from 
North America to Scandinavia and Russia for fisheries and 
aquaculture since the end of 1800 (Lento et al., 2019), some 
mammals were intentionally farmed (e.g., Mustela vison 
(American mink) from the 1920s), while others unintentionally 
arrived in the 1960s (e.g., Microtus levis (sibling vole) in 
Svalbard; Sandvik, Dolmen, et al., 2019). In the Antarctic 
region, alien vertebrates have been reported only for sub-
Antarctic islands where they can survive (conditions in the 
Antarctica itself are probably too extreme unless the species 
can live synanthropically): some mammals (i.e., rats and 
mice) were unintentionally introduced since the eighteenth 
century, others (such as ungulates, cats, rabbits, salmonids) 
were intentionally introduced beginning in the 1950s (Frenot 
et al., 2005; Lecomte et al., 2013). 

The number of alien species in the cryosphere is expected 
to increase in the future due to climate change and human 
pressure (Chapter 3, sections 3 .2 .2 and 3 .3 .4), but 
reported numbers are also expected to be higher due 
to the greater research effort, as noted by the growing 
number of publications on this area (Chan et al., 2019; 
Chwedorzewska et al., 2020; Duffy et al., 2017; K. A. 
Hughes & Pertierra, 2016; Ricciardi et al., 2017). A recent 
exercise of horizon scanning for future potentially invasive 
alien species in the Antarctic Peninsula underlined the 
main threat posed by marine invertebrates that can be 
unintentionally transported in ballast waters and on ship 
hulls (K. A. Hughes et al., 2020; McCarthy et al., 2019). The 
threat could be even greater considering the cruise ship 
volume from the Northern Hemisphere to Antarctica that 
may increase the probability of introducing species able to 
survive cold environments (Chwedorzewska et al., 2020). 

Status

In the Arctic, 34 marine alien species have been reported, 
mostly crustaceans, seaweed, fish, and molluscs (Chan et 
al., 2019). Many more alien species are expected to arrive 
in the future, with Hudson Bay, Northern Grand Banks, 
Labrador, Chukchi, Eastern Bering Seas, and Barents and 
White Seas considered to be the most vulnerable areas 
(Goldsmit et al., 2020). 341 alien plants (188 established 
and 11 invasive) are reported, and their numbers are 
expected to increase due to a warmer climate (Wasowicz 
et al., 2020). The Svalbard archipelago is one of the most 
studied Arctic areas for biodiversity and alien species: 98 
alien and 5 established alien species are reported (Sandvik, 
Dolmen, et al., 2019), mostly coming from mainland Norway. 
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Most alien species cannot survive in Antarctic continental 
conditions, but several have been able to adapt to new 
territories by remaining in the vicinity of human settlements 
(i.e., research stations), where they can reproduce in more 
favourable conditions (K. A. Hughes et al., 2010; McGeoch 
et al., 2015). Up to now, only five marine alien invertebrate 
species have been found (plus one cryptogenic seaweed 
species) with free-living specimens but not established 
populations (Cárdenas et al., 2020; McCarthy et al., 
2019). This low number of recorded marine alien species 
in Antarctica could be due to very harsh environmental 
conditions (harsher than the Arctic), incomplete assessment 
of local biodiversity, and limited sampling efforts (McCarthy 
et al., 2019). For terrestrial species in the continental 
Antarctic (sub-Antarctic islands excluded), there are 15 
known alien species – Poa annua (smooth meadow-
grass) and 14 invertebrates (7 Collembola, 4 Arachnida, 
2 Insecta Diptera, 1 Annelida), most of which are found in 
the Antarctic Peninsula region (Baird et al., 2019; Enríquez 
et al., 2019; K. A. Hughes et al., 2020; K. A. Hughes, 
Pertierra, et al., 2015). This could be due to several factors. 
This Antarctic Peninsula is the area closest to another 
continent (South America), it is the least climatically extreme 
region of Antarctica (and has also experienced a rapid rise 
in temperatures since the 1950s due to climate change), 
and it has the largest concentration of human activity (due 
to research teams and tourism) resulting in a relatively high 
propagule pressure (K. A. Hughes et al., 2020). On the 
sub-Antarctic islands, which circle the continent, at least 
108 alien plants, 72 terrestrial invertebrates, 16 vertebrates 
are reported (Frenot et al., 2005).

Data and knowledge gaps

Overall, the trends and status of alien species in the 
cryosphere could be better documented, even if the 
number of studies on this biome rapidly increased in 
the last years (Chwedorzewska et al., 2020). However, 
baseline biodiversity knowledge is poor and suitable 
taxonomic expertise is often lacking, making it difficult to 
identify alien species, particularly invertebrates and aquatic 

species (K. A. Hughes & Convey, 2012). For example, 
freshwater biodiversity is low in continental Antarctica, 
generally dominated by cyanobacteria, cyanophytes, 
bacteria, yeasts, rotifers, nematodes and diatoms; as 
yet, there are no reports of established alien species, but 
taxonomic specialists of freshwater and terrestrial Antarctic 
biota are rare (K. A. Hughes et al., 2020; K. A. Hughes & 
Convey, 2012).

2.5.3 Trends and status of alien 
and invasive alien species in 
freshwater units of analysis 

2.5.3.1 Wetlands – peatlands, mires, 
bogs 

Trends

Contrary to other freshwater wetlands, peatlands, mires, 
and bogs have generally been considered more resistant 
and resilient to biological invasions due to their extreme 
environments (such as low nutrients and oxygen, harsh 
climate in high mountains or salinity) and absence of 
anthropogenic pressure for many years (Chytrý et al., 
2008; Parish et al., 2008; Zefferman et al., 2015). However, 
landscape transformation, due to peatland drainage for 
agriculture, peat extraction, deforestation, road construction, 
and increased international trade since the nineteenth 
century, is facilitating an increase of alien species in these 
ecosystems (Miletti et al., 2005; Parish et al., 2008; Rebelo 
et al., 2018; Catford et al., 2017; Pellerin & Lavoie, 2000; 
Tousignant et al., 2010). Indeed, many peatlands have been 
drained for agriculture or mined for peat, which has greatly 
altered their plant communities. For example, 98 per cent 
of the fens of the state of Ohio, United States, have been 
destroyed, and invasion by alien species is an ongoing 
concern in many remaining fens (Andreas, 1989). In Asia, 
increased numbers of aquatic invasive alien plants are low 
(0-5 species) in five countries in the region during a period of 
7-18 years (Banerjee et al., 2021; Government of Myanmar, 

Box 2  8   Rapid rise of alien fishes in the Amazon, the world’s most biodiverse freshwater 
region .

The Amazon region contains the world’s richest native diversity 
of fishes (Toussaint et al., 2016). The extent to which this global 
centre of endemism has been invaded by alien species has 
been largely overlooked. A recent study involving 35 regional 
experts has documented 41 species and 17 families of alien 
fishes in the region, based on records that extend as far back 
as 1939 (Doria et al., 2021). Most (75 per cent) of these records 
were observed since the year 2000, during which time there 

has been a distinct increase in the accumulated number of 
alien species with no sign of saturation. This is in contrast 
to the classical view that biodiverse regions are resistant to 
invasion. More than half of these alien species are omnivores 
or carnivores, and are distributed for use in aquaculture or the 
aquarium trade. Intensive fish farming, in particular, is deemed 
to be a major burgeoning contributor to species introductions in 
the region (e.g., Doria et al., 2020).



CHAPTER 2. TRENDS AND STATUS OF ALIEN AND INVASIVE ALIEN SPECIES

175

2005; Islam et al., 2003; Khuroo et al., 2012; Mukul et al., 
2020; Pallewatta et al., 2003; Shrestha & Shrestha, 2021; 
D. T. Tan et al., 2012; Tiwari et al., 2005; Wijesundara, 
2010). A lack of baseline data from most countries impedes 
comprehensive analysis. Increasing anthropogenic threats 
posed to non-permanent wetlands, including climate 
change, will likely accelerate the establishment of new alien 
species (Catford et al., 2013).

Status 

Some studies confirm the lower vulnerability of peatlands 
to biological invasions, with few or even no alien species 
reported for these areas (Chytrý et al., 2008; Lambdon et 
al., 2008; Rejmánek et al., 2013; Zedler & Kercher, 2004). 
For example, in Europe almost 10 per cent of all alien plants 
occur in peatlands (Lambdon et al., 2008) with frequency of 
plants introduced after 1500 spanning from 0 in Catalonia 
and Czech Republic to 0.2 per cent in the United Kingdom 
(Chytrý et al., 2008). An assessment of Natura 2000 areas in 
Poland (Perzanowska et al., 2019) showed that the majority 
of bogs, mires, and fens host a low number of alien species 
(maximum 10 species), occurring at low frequency. Other 
studies underline the increasing effect of the anthropogenic 
pressures on peatlands and the subsequent higher 
occurrence of alien species (e.g., Jukonienė et al., 2015). 

In contrast to peatlands and bogs, riparian habitats are 
among the most invaded habitats (Catford & Kyle, 2016; 
Vilà et al., 2007). A study comparing numbers of established 
species in European habitats (Pyšek, Bacher, et al., 2010) 
showed that riparian and aquatic habitats are most heavily 
colonized by alien mammals and herptiles; the latter group 
is also reaching high species densities in mires. The highest 
densities of alien bird species are found in aquatic and 
cultivated habitats. Overall, riparian habitats appear highly 
invaded by all groups of animal taxa except insects. For 
plants, alien species numbers from riparian habitats were 
almost as high as for urban habitats (Pyšek, Bacher, et 
al., 2010). 

Across Asia, the number of invasive alien plants in non-
permanent freshwater ecosystems range from 5-13 
species in 13 countries (Banerjee et al., 2021; Kurniawan 
& Paramita, 2020; Mukul et al., 2020; Qureshi et al., 2014; 
Shrestha & Shrestha, 2021; Sujanapal & Sankaran, 2016; 
Weber et al., 2008; Wijesundara, 2010; H. Xu et al., 2012). 
The most dominant species in the region are Pontederia 
crassipes (water hyacinth, recorded in 17 countries of 
the 19 countries for which data are available), Pistia 
stratiotes (water lettuce, 17), Salvinia × molesta (kariba 
weed, 12), Mimosa pigra (giant sensitive plant, 11), and 
Alternanthera philoxeroides (alligator weed, 10).5 Some 

5. Data extracted from the GISDP (http://www.iucngisd.org/gisd/), GRIIS 
(https://doi.org/10.5281/zenodo.6348164) and ASEAN (https://asean.org/)

of the new additions to the region include Cabomba 
caroliniana (Carolina fanwort) and Typha angustifolia (lesser 
bulrush). In Kolkheti Lowland (Georgia), 423 alien plants are 
reported, 308 of which are present in peatland areas: the 
introduction of these species was favoured by the increased 
transformation and anthropization of the areas in the 
nineteenth century (Parish et al., 2008). Wagner et al. (2017) 
found that, among the 83,396 plots of woodland habitats in 
Europe, broadleaved bog woodlands on acid peat have the 
second highest mean relative alien species richness per plot 
(2.2 per cent), probably due to a higher degree of human 
disturbance (e.g., peat extraction) and the invasiveness 
(Chapter 1, section 1 .4 .3) of some alien species like 
Prunus serotina (black cherry). 

Drainage can favour the accessibility of these areas for 
tourists, facilitating the unintentional introductions of alien 
species (Parish et al., 2008): in 2018 Drosera rotundifolia 
(common sundew) was found in a peat bog in Nahuel Huapi 
National Park (Argentina) and its introduction seems related 
to tourists visiting the area (Vidal-Russell et al., 2019). Other 
disturbances can promote alien species introduction and 
spread: in the montane bogs of Haleakala National Park, 
Hawaii, undisturbed bogs were less invaded, while bogs 
with feral alien pigs showed an increase in invasive alien 
plants (Loope et al., 1992). A similar result was found in 
other areas: in a Sphagnum-dominated peatland in the 
Central Andes of Colombia, increased nutrient additions 
and physical disturbance due to agricultural activities led 
to the widespread occurrence of Cenchrus clandestinus 
(Kikuyu grass; Urbina & Benavides, 2015); in a New Zealand 
bog modified by the surrounding agricultural activities, a 
higher occurrence of alien invertebrates has been reported 
compared to undisturbed bogs (Watts et al., 2020). Finally, 
in some cases, natural and prescribed fires can favour 
biological invasions in these ecosystems. At Kaituna 
Wetland, Bay of Plenty (New Zealand), fire disturbance 
promoted more alien species (Christensen et al., 2019): after 
four years, the authors found 14 alien vascular species and 
10 native species in burnt plots vs 10 alien species and 18 
native species in unburnt plots. A similar situation is reported 
for the United Kingdom where in burnt plots the invasive 
alien moss Campylopus introflexus (heath star moss) was 
more abundant and present than the native cotton grass 
Eriophorum vaginatum (hare-tail cotton-grass; Noble et 
al., 2017).

Data and knowledge gaps

There is a lack of comprehensive and in-depth studies on 
alien species in peatlands across different continents and 
involving all taxa. The literature mostly presents scattered 
specific studies, focused on Europe and North America, 
which are biased towards plants. Information about the 
temporal trends of alien species in peatlands, bogs and 
mires, and their status are also mostly missing.

http://www.iucngisd.org/gisd/
https://doi.org/10.5281/zenodo.6348164
https://asean.org/
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2.5.3.2 Inland surface waters and water 
bodies/freshwater 

Trends

The number of alien species in freshwater has been 
reported to increase all over the world (Cowie, 1998; 
Hussner et al., 2010; O’Flynn et al., 2014; Ricciardi, 2001; 
Roll et al., 2009). The trends in rising alien species numbers 
are very consistent across all taxonomic groups such as 
aquatic invertebrates (Mangiante et al., 2018; Muñoz-Mas 
& García-Berthou, 2020; Rabitsch & Nehring, 2017; Roll 
et al., 2009), vertebrates (A. B. Kumar, 2000; Muñoz-
Mas & García-Berthou, 2020) and plants (Hussner et al., 
2010; Mangiante et al., 2018; Rabitsch & Nehring, 2017), 
across habitats such as lakes (Ricciardi, 2001) and rivers 
(M. C. Jackson & Grey, 2013; Rabitsch & Nehring, 2017) 
and across continents such as Europe (M. C. Jackson & 
Grey, 2013; Rabitsch & Nehring, 2017), North America 
(Mangiante et al., 2018; Ricciardi, 2001), and Asia (Roll et 
al., 2009). Comprehensive studies for Africa, Australasia, 
and South America (Boxes 2 .8 and 2 .9) are mostly lacking, 
but global studies and studies of individual taxonomic 
groups suggest similar increasing trends (Madzivanzira 
et al., 2021). In many cases, increases in freshwater alien 
species numbers accelerated after 1950 (Chambers et al., 
1999; Hussner et al., 2010; Mangiante et al., 2018; Mills et 
al., 1993; Muñoz-Mas & García-Berthou, 2020; Roll et al., 
2009), while other studies show consistent increases since 
1900 (Rabitsch & Nehring, 2017) or even 1800 (Ricciardi, 
2001). The observed acceleration may, however, also result 
from increased sampling intensity and greater awareness in 
more recent years (Belmaker et al., 2009; C. J. Costello & 
Solow, 2003). 

Numbers of alien freshwater vertebrates seem to have been 
increasing for longer compared to invertebrates, although 
this may also be a consequence of varying sampling 
intensity and better taxonomic and ecological knowledge 
(Muñoz-Mas & García-Berthou, 2020). The number of alien 
insects in freshwaters is comparatively low even though 
aquatic insects are frequent in native faunas (Fenoglio et 
al., 2016; Guareschi et al., 2013; Muñoz-Mas & García-
Berthou, 2020). This has been attributed to a combination 
of factors including low economic impact and low probability 
of transport and survival of alien aquatic insects (Fenoglio 
et al., 2016). Furthermore, not only has the number of 
freshwater alien species consistently increased, but the 
rates of new records over time also rose continuously (M. 
C. Jackson & Grey, 2013; Leuven et al., 2009; Muñoz-
Mas & García-Berthou, 2020; Ricciardi, 2001). Declines in 
new records of alien species have been observed in a few 
studies recently (i.e., after 2005), but these declines are likely 
due to lags in detection and reporting of new alien species 
(Mangiante et al., 2018; Muñoz-Mas & García-Berthou, 
2020; Seebens, Blackburn, et al., 2017). Increases in 
either species numbers or rates of new records have been 

associated with increasing import volumes (Cowie, 1998; 
M. C. Jackson & Grey, 2013; Ricciardi, 2001; Seebens, 
Essl, et al., 2017), human population size (M. C. Jackson & 
Grey, 2013), and tourism (Cowie, 1998). Similar increases 
are reported for alien plants as shown by the Joint Nature 
Conservation Committee River Macrophytes Database that 
contains records from standardized vegetation surveys 
of rivers from across the United Kingdom. Surveys focus 
on rivers with existing or potential conservation value, and 
almost 4500 surveys have been undertaken since 1977. 
River sites were surveyed both pre- and post-1990. Results 
showed a 31 per cent increase in the presence of invasive 
alien plant species across two survey periods in the United 
Kingdom (Pattison et al., 2017).

Status

Although probably due in large part to a knowledge bias, 
biological invasions in aquatic systems represent only a 
small fraction of all invasions; for example, of the 2,033 alien 
species recorded in South Africa, only 191 are aquatic; of 
these, most are freshwater invasive alien species (Skowno 
et al., 2019). Global maps of the distribution of alien species 
exist for fishes (Dawson et al., 2017; Leprieur et al., 2008) 
and amphibians (Capinha et al., 2017). In both cases, 
consistently high numbers of alien freshwater species have 
been reported for Europe and North America, including 
Hawaii, while hotspots of alien freshwater fishes have 
also been found in South-East Asia, Central Asia and 
mesoamerica (e.g., Dawson et al., 2017; Leprieur et al., 
2008; Boxes 2 .8 and 2 .9). Leprieur et al. (2008) reported 
occurrences of 9,968 alien fish species in 1,055 river basins 
worldwide, with up to 95 per cent of present fish species 
being alien. The global distribution of alien freshwater fishes 
has been attributed to high per capita gross domestic 
product and high human population density (Chapter 
3, sections 3 .2 .2 and 3 .2 .3 .6; Dawson et al., 2017; 
Leprieur et al., 2008), but also high per centages of urban 
areas and basin areas (Leprieur et al., 2008). Many alien 
freshwater species have been intentionally released (A. B. 
Kumar, 2000; Muñoz-Mas & García-Berthou, 2020; Strayer, 
2010) through, for instance, recreational fishing (Davis & 
Darling, 2017). Introduced fish species often represent 
large-bodied species (predators and herbivores) (Blanchet 
et al., 2010), which may alter food web structures with 
consequences for the whole food web (Cucherousset et 
al., 2012). Capinha et al. (2017) report alien populations 
for 78 amphibian species, but not all might be classified 
as freshwater species. Significantly more alien freshwater 
amphibians have been found in islands compared to 
mainlands (Capinha et al., 2017). An important pathway for 
introduction is the construction of inland canals which are 
responsible for a large number of freshwater alien species 
such as invertebrates and fish (Faulkner et al., 2020; Galil et 
al., 2007; Katsanevakis et al., 2013; Schöll, 2007). Among 
alien freshwater invertebrates, most studies are available 
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for freshwater crustaceans and molluscs (Cianfanelli et al., 
2016; Cuthbert et al., 2020; Lodge et al., 2012), but no 
single study exists that shows the global distribution of alien 
freshwater invertebrates. Compared to aquatic alien animals, 
aquatic alien plants and algae have been under-investigated. 
Comprehensive reports on large-scale distributions of 

aquatic plants are lacking, but global assessments are 
available for well-investigated individual species such as 
Pontederia crassipes (water hyacinth) (Kriticos & Brunel, 
2016), Azolla filiculoides (water fern) (Rodríguez-Merino et 
al., 2019) or Lemna minuta (least duckweed) (Ceschin et 
al., 2018).

Box 2  9   North American Great Lakes: An assessment of trends of alien species .

The biological invasion history of a region can reveal the 
changing influence of transport vectors and management 
actions over time. The North American Great Lakes basin is 
the world’s most invaded freshwater ecosystem (Pagnucco 
et al., 2015; Ricciardi, 2006). Numbers and taxonomic 
composition of established alien species discovered in the 
basin during different time periods are correlated to changes 
in vector and pathway activities, such as fish stocking, 
canal development, and transoceanic shipping (Ricciardi, 
2006). Thus, the biological invasion history of the basin is 
punctuated by major phases distinguished by a predominance 
of particular taxonomic and functional groups as well as 
taxa from particular donor regions. During periods of fish 
stocking, for example, fishes and fish pathogens comprised 
many of the alien species discovered. Similarly, following the 
transition from solid ballast to ballast water in ships during 
the early twentieth century, alien species of phytoplankton 
and zooplankton were discovered more frequently (Mills et 

al., 1993). The opening of the St. Lawrence Seaway in 1959 
marked a period in which ballast water discharge became 

the dominant vector of invasion. A more recent phase in 
the history of the basin is distinguished by a mass invasion 
of Ponto-Caspian species (including Dreissena polymorpha 
(zebra mussel), Dreissena rostriformis bugensis (quagga 
mussel), Neogobius melanostomus (round goby), Cercopagis 

pengoi (fishhook waterflea), and several others) and euryhaline 
invertebrate taxa with resting eggs that can survive transport 
in ballast tank sediments (Pagnucco et al., 2015; Ricciardi, 
2006; Ricciardi & MacIsaac, 2000). Between 1959 and 2006, 
inclusive, the average rate of discovery of newly established 
alien species in the basin was 1.69 per year, or one new 
alien species every 7 months (Figure 2 .35). The majority 
(65 per cent) of these introductions are attributable to ballast 
water shipping, primarily from European donor regions. 
However, since 2006, the overall rate of invasion has been 
reduced, declining by 85 per cent to its lowest level in two 
centuries (Ricciardi & MacIsaac, 2022) with very few invasions 
attributable to shipping. This abrupt shift in invasion risk 
follows the implementation of ballast water regulations by 
Canada and the United States in 2006 and 2008, respectively.
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Figure 2  35   Cumulative numbers of alien species in the North American Great Lakes 
basin . 

The total number of alien species is shown in the top most line. Other trend lines show accumulations of species whose 
introductions are attributable to various vectors, including shipping (ballast water, solid ballast, and hull fouling), canals, 
deliberate release (e.g., intentional stocking of fishes), and other vectors (e.g., bait, aquarium, and unintentional releases). Data 
sources: Mills et al., 1993; NOAA, 2021; Ricciardi, 2006.
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Data and knowledge gaps

Inland waters, riparian networks, and channels are very 
effective corridors for propagules that can easily be 
dispersed over long distances (Brundu, 2015a; Willby, 
2007), but aquatic environments are difficult to monitor and 
an early detection of a submerged species introduction 
is seldom possible. No analysis reporting gaps in trends 
and status of alien species in freshwater systems currently 
exists, but a comparison of available literature reveals 
that freshwater systems have been far less investigated 
than terrestrial and (most likely) marine systems (Seebens, 
Blackburn, et al., 2017). Among these, the vast majority of 
studies have been conducted in Europe and North America, 
while information about the temporal trends in freshwater 
alien species and their status across continental ranges 
are largely absent. The only exceptions seem to be fishes 
and amphibians, for which comprehensive large-scale 
analyses are available (Capinha et al., 2017; Dawson et al., 
2017; Kraus, 2009; Leprieur et al., 2008). However, large 
information gaps on species occurrences exist among these 
taxonomic groups, particularly in Asia and Africa (Dawson 
et al., 2017). Large-scale information is missing for most 
freshwater invertebrates, including macrophytes and algae. 
Riparian habitats have been extensively studied for plant 
invasions (Maskell et al., 2006; D. M. Richardson et al., 
2007), but many studies focus on a handful of invasive alien 
taxa (e.g., Elderd, 2003; Hood & Naiman, 2000; Pyšek & 
Prach, 1993). 

2.5.4 Trends and status of alien 
and invasive alien species in 
marine units of analysis

2.5.4.1 Shelf ecosystems (neritic and 
intertidal/littoral zone) 

Trends

The number of marine alien species has been consistently 
and continuously increasing globally (Bailey et al., 2020) and 
in individual regions such as in the waters of North America 
(Cohen & Carlton, 1998; Ruiz, Fofonoff, et al., 2000), Europe 
(Gollasch, 2006; Katsanevakis et al., 2013; Reise et al., 
1998; Zenetos & Galanidi, 2020), Australia (Hewitt et al., 
2004), South America (Schwindt et al., 2020; Teixeira & 
Creed, 2020; Toral-Granda et al., 2017), Africa (Mead et al., 
2011; T. B. Robinson et al., 2020) and the Pacific (Carlton 
& Eldredge, 2009; Coles et al., 1999). Time series of newly 
reported marine alien species often date back to the early 
nineteenth century (Carlton et al., 2019; Carlton & Eldredge, 
2009; Cohen & Carlton, 1998; Coles et al., 1999; Gollasch, 
2006; Hewitt et al., 2004; Mead et al., 2011; Reise et al., 
1998; Ruiz, Fofonoff, et al., 2000; Schwindt et al., 2020; 
Teixeira & Creed, 2020; S. L. Williams & Smith, 2007; Wolff, 
2005). Likewise, increases in rates of new alien species 

records were frequently observed especially in the early 
twentieth century (Carlton & Eldredge, 2009) or after 1950 
(Bailey et al., 2020; Coles et al., 1999; Gollasch, 2006; 
Hewitt et al., 2004; Mead et al., 2011; Ruiz, Fofonoff, et al., 
2000; Schwindt et al., 2020; Teixeira & Creed, 2020; S. L. 
Williams & Smith, 2007). Wolff (2005) reported an increase 
in long-distance introduction events after 1950. Increases 
in marine alien species numbers are not only related to 
the intensifications of global shipping consistently across 
studies (i.e., hull fouling and ballast water), aquaculture 
and cultivation (including stocking and aquarium releases) 
(Bailey et al., 2020; Coles et al., 1999; Gollasch, 2006; 
Hewitt et al., 2004; Katsanevakis et al., 2013; Reise et 
al., 1998), but also increased tourism (Toral-Granda et 
al., 2017), and natural dispersal from neighbouring alien 
populations (Gollasch, 2006; Wolff, 2005). Rising shipping 
activity during both world wars is associated with new 
marine alien species introductions at naval bases (Coles 
et al., 1999). Another major pathway was the opening of 
new shipping canals such as the Panama Canal, the Suez 
Canal, and the St. Lawrence River (Galil et al., 2007; Mills et 
al., 1993), which resulted in large numbers of marine alien 
species introductions, particularly in the Mediterranean Sea 
(Galil et al., 2014). The extensions of these shipping canals 
(Galil, Boero, Fraschetti, et al., 2015; Muirhead et al., 2015), 
as well as the opening of new transport routes such as 
the Northern Sea routes through the Arctic Ocean due to 
climate change or the intensification of existing routes, have 
led to more introductions of marine alien species (Ascensão 
et al., 2018; Miller & Ruiz, 2014). Sudden declines in newly 
recorded marine alien species towards the end of the 
reported time series have been frequently noted (Gollasch, 
2006; Wolff, 2005), which are associated with lags in 
detection and reporting (Wolff, 2005).

Status

One of the few global studies of marine alien species 
revealed hotspots in coastal areas of the North-East 
Atlantic, Northern European Seas, the Mediterranean Sea, 
Hawaiian Islands, and New Zealand (Bailey et al., 2020; 
Box 2 .10 for more details). Many of the reported established 
alien species belong to arthropods, fishes, molluscs, and 
algae (Bailey et al., 2020; Gollasch, 2006). The recently 
launched database WRiMS (M. J. Costello et al., 2021) 
revealed similar hotspots, although a direct comparison is 
difficult due to varying spatial resolutions. That said, many 
regions that appear to have low numbers of reported alien 
species (i.e., not “hotspots”), may in fact reflect more on 
the history and intensity of investigation rather than the 
intensity of invasion. Until 2019, the Galapagos Islands were 
reported to be invaded by only five marine species, but a re-
investigation revealed a minimum of 53 marine alien species 
present in that Archipelago (Carlton et al., 2019). Chile is 
reported to have low numbers of marine alien species, with 
various hypotheses offered to explain the low alien species 
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richness (Neill et al., 2020), one being low research intensity. 
Comparing studies of similar sampling areas such as marine 
bays or port regions revealed alien species numbers of 
similar ranges with most species found in San Francisco 
Bay, United States (234 species) (Cohen & Carlton, 
1998) followed by the Chesapeake Bay, United States 
(116 species) (Ruiz et al., 1997), Port Philip Bay, Australia 
(99 species) (Hewitt et al., 2004), Pearl Harbor, Hawaii 
(69 species) (Coles et al., 1999) and Coos Bay, Oregon, 
United States (60) (Ruiz et al., 1997). Most of these numbers 
are, however, based on data that are more than 20 years old 
and higher alien species numbers can be expected now. For 
example, J. T. Carlton & Eldredge (2009) updated the Pearl 
Harbor number from 69 to more than 175 (many species 
were older invasions or of other taxonomic groups not noted 
in Coles et al. (1999), and thus not post-1999 invasions). 

On the whole Hawaiian Archipelago, 333 marine alien 
species have been reported (Carlton & Eldredge, 2009, 
2015). Among European Seas, by far the largest numbers 
of marine alien species have been recorded for the 
Mediterranean Sea (Galil et al., 2021b; Katsanevakis et 
al., 2020), followed by the North Sea and the Atlantic 
coast (Gollasch, 2006). Shipping (ballast water and hull 
fouling) and aquaculture have been consistently reported to 
represent the most important pathways for the introduction 
of marine alien species (Bailey et al., 2020; Carlton & 

Eldredge, 2009; Coles et al., 1999; Floerl & Inglis, 2005; 
Galil et al., 2014; Gollasch, 2006; Hewitt et al., 2004; Ruiz, 
Fofonoff, et al., 2000; Schwindt et al., 2020; Ulman et 
al., 2019; S. L. Williams & Smith, 2007; Box 2 .10). Often, 
large numbers of marine alien species are found at sites 
of intense human activity such as commercial ports (Ruiz 
et al., 1997), marinas (Ulman et al., 2019), or disturbed 
habitats (Coles et al., 1999; S. L. Williams & Smith, 2007). 
Other vectors of introduction are fishing bait or ornamental 
purposes (Coles et al., 1999; Gollasch, 2006). Patterns of 
distribution and trends were very similar across a wide range 
of taxonomic groups such as macroalgae, arthropods, 
cnidarian, polychaeta, molluscs, and fishes (Gollasch, 2006; 
Ruiz, Fofonoff, et al., 2000; Seebens et al., 2016; S. L. 
Williams & Smith, 2007). Microorganisms were frequently 
introduced (Cohen & Carlton, 1998; Ruiz, Rawlings, et 
al., 2000); however, studies about the introduction of 
marine microorganisms and many other small size taxa are 
largely lacking.

Data and knowledge gaps 

Among marine ecosystems, shelf ecosystems are much 
better investigated compared to the open ocean or the deep 
sea. Still, information about marine alien species remains 
one of the major gaps in the field of invasion ecology. Some 
high research interest regions such as North American 

Box 2  10   Marine ecoregions: A global assessment of trends and status of alien and 
invasive alien species .

An extensive dataset of first detection records of marine alien 
species from 1965–2015 across 49 marine ecoregions is 
provided by Bailey et al. (2020). This dataset includes three 
major components of alien species records including the year 
of first collection, the invasion status, and potential pathways 
of introduction. Data were analyzed at both regional and global 
scales to examine the patterns of first record rate, species 
numbers, and transport pathways. 

The assembled dataset included 2,209 records of marine alien 
species (1,442 unique species belonged to 17 phyla) where 
ten ecoregions had zero confirmed records during the period 
of study. On a global scale, about 75 per cent of marine alien 
species were reported as established and about 20 per cent 
had unknown invasion status, while the remaining records 
belonged to species with failed establishments (5.4 per cent) 
or extinct (0.5 per cent) populations. Most of the marine alien 
species were likely introduced as stowaways in ships’ ballast 
water or biofouling. Escape of species from aquaculture 
or mariculture followed a similar pattern, while the corridor 
pathway and escape of pet or aquarium species increased 
beginning in the late 1990s. Nearly one-third of marine alien 
species’ records were associated with a single pathway 
(32.7 per cent), while most were associated with at least two 

(52.6 per cent), or three (14.1 per cent) pathways. However, 
the patterns of alien species numbers varied across regions 
as a result of differences in pathway strength, environmental 
conditions, habitat size, survey effort, and taxonomic effort. 
The cumulative number of records from 1965-2015 ranged 
from zero to more than 500 per ecosystem, with various 
levels of succession of the population establishment across 
those regions. Ship fouling, transport stowaway, and ballast 
water were the dominant pathways in most regions, and were 
responsible for at least 40 per cent of introduction events. 
Other pathways became important for individual regions such 
as the corridor pathway (Suez Canal) in the Mediterranean 
Sea and escape of aquaculture/mariculture species in the East 
China Sea, South China Sea, and Yellow Sea (Bailey et al., 
2020). Although their dataset represents an extensive global 
collection of marine alien species records, it only covers about 
73 per cent of the world’s coastal large marine ecosystems, 
and data coverage was low in Africa, Meso- and South 
America, and Asia. As discussed in Bailey et al. (2020), marine 
alien species have undoubtedly occurred and reported in 
these areas, but due to cost of marine alien species surveys, 
limited resources, and lack of expertise across many taxa and 
regions, data of sufficient quality were likely not available for 
their study.
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coastlines and European Seas, including the Mediterranean 
Sea, are comparatively well investigated, but data is far from 
complete and regular monitoring does not occur (Tsiamis 
et al., 2021). Information for most other coastal areas is 
largely lacking. The most comprehensive available study 
on the global distribution of marine alien species shows 
large areas where information or expertise are lacking such 
as regions in Meso- and South America, Africa, and Asia 
(Bailey et al., 2020). Even where information is available, 
lists are highly incomplete for many coastal areas. Based on 
expert knowledge, true numbers of marine established alien 
species might be up to ten times higher in some regions 
than reported in Figure 2 .5.

2.5.4.2 Surface open ocean 

Trends 

Established alien species numbers are increasing in the 
open ocean from the tropics to polar regions due to 
warming oceans and human activity (M. J. Costello et 
al., 2021). Many marine alien species tolerate a broader 
thermal range than native species and are able to show 
rapid physiological adaptation; both characteristics give 
alien species more habitat opportunities than natives 
(Canning-Clode et al., 2011; H. Li et al., 2020). For 
example, “Caribbean Creep” refers to a number of marine 
invertebrates (e.g., Petrolisthes armatus (green porcelain 
crab)) from the Caribbean that have expanded their 
distribution ranges poleward and invaded the southern 
and mid-Atlantic United States coasts (Canning-Clode et 
al., 2011). Similarly, “African Creep” refers to the number 
of marine species moving poleward into the Mediterranean 
from lower latitudes (Canning-Clode & Carlton, 2017). In 
1750, wooden sailing vessels could have carried 120 marine 
fouling and boring fauna and flora (Carlton, 1999b), while in 
the twentieth century, over 10,000 different marine species 
were estimated to be transported daily among different 
global geographic regions via ballast tanks (Carlton, 1999b) 
prior to the beginnings of detailed formulations for ballast 
water management. In this century, a vast global effort is 
underway to implement universal ballast water management 
strategies to prevent the transport and introduction of 
invasive alien species (Chapter 5, section 5 .5 .1). 

The global rate of marine alien species records was relatively 
stable during 1965–1995 but increased significantly after 
1995 and peaked at about 66 primary detections per year 
during 2005–2010, and then again decreased (Bailey et al., 
2020). Arthropods, molluscs, and fishes, by far the most 
thoroughly studied groups, were also not surprisingly the 
most frequently reported aquatic alien species during this 
time period and were most likely introduced as stowaways 
in ships’ ballast water or biofouling. However, direct vector-
related evidence was often absent. Arctic ship-based 
summertime transportation and tourism also increased over 

the past two decades, co-occurring with sea ice reductions 
(IPCC, 2019). This increase might bring implications for 
global trade and traditional shipping corridors economies, 
alerting the Arctic marine ecosystems and biodiversity, such 
as from invasive alien species and local pollution (IPCC, 
2019). The relatively recent phenomenon of floating plastic 
debris in the open ocean facilitates the transport of coastal 
and oceanic species that might normally not survive the 
open ocean and may result in new and more frequent 
introductions of alien species across the oceans (Chapter 
3, section 3 .3 .3 .3; Haram et al., 2021).

Environmental and anthropogenic changes have triggered 
reorganizations of reef ecology, zonation physiology, and 
dominance (Miranda et al., 2020). One example is the plastic 
pollution in the ocean such as polystyrene foam which can 
be a dispersal vehicle for the invasive coral Tubastraea 
spp. (sun corals) (Faria & Kitahara, 2020). For example, 
in Brazilian reefs Mussismilia harttii (scleractinian coral) is 
threatened by the dominance of invasive sun corals (Faria 
& Kitahara, 2020; Miranda et al., 2020). Sun corals lack 
natural predators and can reproduce rapidly with extensive 
defensive mechanisms which makes them a successful 
invasive alien species over large areas along the Brazilian 
coasts (Faria & Kitahara, 2020; Miranda et al., 2020).

Status 

There are more than 800 established alien species reported 
in the European seas only, some of which are invasive and 
impacting marine ecosystem services and biodiversity 
(Tsiamis et al., 2018, 2020). Analyses revealed that a 
large number of alien species were not reported in initial 
assessments, or were proven to be historical misreporting 
(Tsiamis et al., 2020). Thus, the Marine Strategy Framework 
Directive Descriptor 2 was implemented to provide an 
improved basis for reporting new alien species and to help 
the establishment of monitoring systems of targeted alien 
species (Tsiamis et al., 2020). Major intentional introductions 
for fisheries also occurred with deep-sea species, such as 
Paralithodes camtschaticus (red king crab), native to the 
north Pacific coast and released in the Barents Sea during the 
1960s (ICES, 2005). The species was later captured in the 
Ionian Sea in the Mediterranean (Faccia et al., 2009), possibly 
transported by ballast water, though Faccia et al. (2009) 
raised doubts about whether a larva/post-larve presumably 
arrived in ballast water could withstand summer temperatures 
for so long – the specimen collected weighed about 4 kg 
and the estimated age was 10 years. Among tropical marine 
regions, Hawaii was found to be heavily affected by alien 
species either due to its location, governance (Glossary), or 
research effort undertaken to understand biological invasions 
in this region (Alidoost Salimi et al., 2021). An alternative 
explanation might be also due to lower native biodiversity 
associated with Hawaiian ecosystems providing more vacant 
niches being available to the alien species. 
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The recently launched WRiMS (marinespecies.org/
introduced) is an expert-edited world list of introduced 
marine species and provides information of alien and 
invasive alien marine organisms (M. J. Costello et al., 
2021). An alien marine metazoan species checklist for the 
Mediterranean Sea lists 573 alien species (Galil et al., 2014). 
Most of those alien species are thermophilic, originally 
from the Indo-Pacific or Indian Oceans that invaded the 
Mediterranean through the Suez Canal (Galil et al., 2014). 
Additionally, the Information System on Aquatic Non-
Indigenous and cryptogenic Species (AquaNIS) database 
provides information on 859 aquatic alien and cryptogenic 
species in the North Atlantic region (AquaNIS, 2015).

Data and knowledge gaps 

The open sea represents one of the least investigated 
units of analysis with respect to biological invasions. 
The size and cost of sampling the open sea presents a 
particular challenge. Another challenge is how “alien” is 
defined in the open sea because it is usually defined for 
much smaller geographic units such as countries – a 
challenging concept to transfer to the open ocean. Some 
databases, such as WRiMS (M. J. Costello et al., 2021), 
also cover the open ocean, but the vast majority of records 
have likely been sampled along the coasts. However, 
WRiMS records provide the opportunity to map the actual 
locations of marine alien species using records from the 
Ocean Biodiversity Information System (OBIS) or GBIF. 
Nonetheless, a comprehensive assessment of the trends 
and status of alien and invasive alien species in open 
oceans is still missing and difficult to conduct currently due 
to the lack of records. 

There are other global databases of species occurrences 
such as AlgaeBase (Guiry & Guiry, 2021) or FishBase 
(Froese & Pauly, 2015), but the information about the status 
of invasion is incomplete or totally lacking. There are also 
distributed occurrence records for marine alien species in 
the GRIIS dataset (Pagad et al., 2022) and other national 
checklists, but these usually reflect coastal areas rather than 
occurrences in the open ocean. This lack of information on 
open ocean alien species occurrences represents one of the 
largest knowledge gaps across all units of analysis. 

2.5.4.3 Deep sea

Trends 

As biota occurring at deep ocean depths have been rarely 
surveyed (Saeedi, Costello, et al., 2019; Saeedi et al., 
2020; Saeedi & Brandt, 2020), there are too few records 
over too short a time period to infer trends. The deep-
sea populations of alien species may follow a “boom-and 
bust” pattern of abundance (Strayer et al., 2017), such as 
documented between 1995-2002 for Philine auriformis 

(New Zealand sea slug) in southern California, United States 
(Cadien & Ranasinghe, 2003), settle for long-term low-
abundance stability, or, following a time lag or environmental 
triggering event, result in greatly increased abundance. 
As depth increases, less measurements are available for 
biological variables (M. J. Costello et al., 2018; Saeedi, 
Bernardino, et al., 2019), making estimations of rates of 
biological invasion challenging in the deep ocean. 

Status 

Records of biological invasions into depths greater than 
200 meters are rare. The intentional introduction of 
the economically important North Pacific Paralithodes 
camtschaticus (red king crab) in the 1960s into the Barents 
Sea demonstrated that the deep ocean is not immune 
to invasions (Dvoretsky & Dvoretsky, 2018; Jørgensen & 
Nilssen, 2011). Immature individuals remain on the shallow 
shelf (20–50 m), adult specimens mostly inhabit deep soft-
bottom areas (100–400 m), migrating into shallow waters 
(less than 50 m) for moulting and mating (Sundet & Hjelset, 
2011). Specimens of Pterois spp. (lionfishes) that invaded 
the Western North Atlantic/Caribbean region were reported 
from Bermuda, Curaçao, and Honduras at depths between 
250 and 300m (Andradi-Brown, 2019). Philine auriformis 
(New Zealand sea slug) was introduced to the West Coast 
of North America (southern California, Untied States of 
America, to British Columbia, Canada) and occurs from the 
intertidal to more than 300 m (Cadien & Ranasinghe, 2003). 
In the south-east Mediterranean Sea, four carnivorous Red 
Sea species, Champsodon nudivittis (crocodile toothfish), 
Etrumeus golanii (Golani’s round herring), Trypauchen 
vagina (burrowing goby), and Charybdis longicollis (lesser 
swimming crab) were recently recorded at depths over 
200 m (Galil et al., 2019; Innocenti et al., 2017). One 
possible pathway of deep-sea species translocations may 
be deep submergence vehicles whose use has increased 
since the 1960s (Voight et al., 2012). It seems realistic to 
suggest that understanding the scale of deep-sea invasions 
by alien species remains one of the most important 
overlooked aspects of marine invasion science.

The deep sea is now also warming, as has been observed in 
shallow waters, and the temperature of water below 2000 m 
has increased since 1992, especially in the Southern 
Ocean (IPCC, 2019). For example, deep Mediterranean 
waters have warmed by 0.12 °C since the mid-twentieth 
century and the deep oceans now store 16–89 per cent 
more heat than before (McClain et al., 2012). Temperature 
changes and the redistribution of total energy will ultimately 
impact deep-sea faunal distributions and invasion rates. 
For example, some deep-sea fish families of Actinopterygii 
were identified with depths over 1000 m and were proposed 
as invasive alien species where most of their constituent 
species live in shallower than 1000 m (Priede & Froese, 
2013). Also, the invasion of Erythrean species of the 
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Levantine basin into the lower continental shelf and upper 
slope suggests biological invasions in the deep sea warrant 
more attention (Galil et al., 2019). The west Antarctic 
Peninsula shelf is rapidly warming and is expected to soon 
be invaded by lithodid crabs from the Ross Sea waters that 
have crossed the Antarctic shelf (C. R. Smith et al., 2012).

Data and knowledge gaps

Estimating the gaps in alien species distributions of the 
deep-sea fauna is challenging because the deep sea is the 
most unexplored place on Earth and there is much yet to be 
learned. However, alien species pose a threat to the unique, 
diverse, and fragile mesophotic “animal forests”. Large data 
and knowledge gaps therefore remain for trends and status 
of invasive alien species in the deep sea as well as a lack of 
information the actual data gaps.

2.5.5 Trends and status of alien 
and invasive alien species in 
anthropized areas

2.5.5.1 Urban/semi-urban

Urban habitats include constructed, industrial, and other 
artificial land, human settlements, buildings, industrial 
developments, transport networks and waste dump sites, 
but also a diversity of semi-natural and constructed green 
spaces. Cities contain high densities of people and are 
hubs of human-mediated movement of commodities. 
Transport linkages (e.g., airports and harbours) facilitate 
the introduction and dissemination of alien species 
through introduction pathways such as trade, tourism, and 
horticulture (Chapter 3, section 3 .2 .3; Dehnen-Schmutz 
et al., 2007). The intensive study of alien plants in urban 
areas began in a few cities around the world in the 1980s 
(Esler, 1987; Kowarik, 1990; Stalter et al., 1992), largely out 
of natural history interest. Large-scale comparisons of alien 
plant taxa among cities grew out of a more macroecological 
approach in Europe in the 1990s (Kowarik, 1995a; Pyšek, 
1998), which has since given way to more recent global 
assessments of patterns of alien species in cities (Aronson 
et al., 2014; Gaertner et al., 2017).

Trends 

Evidence suggests that the rate and extent of biological 
invasions are increasing globally (Seebens, Blackburn, et 
al., 2017) and cities often play important roles as hubs for 
the spread of alien species (Chytrý et al., 2012; McLean et 
al., 2017). Studies on long-term dynamics of urban floras 
revealed a steep increase in established alien species 
numbers along with accelerating urbanization during the last 
century (Chocholoušková & Pyšek, 2003; S. Knapp et al., 
2010; Tretyakova et al., 2018), with alien species occupying 

a median of 28 per cent (ranging from 25-50 per cent) of 
their respective urban floras (Aronson et al., 2014; Esler, 
1987; Ricotta et al., 2009, 2012; G.-L. Zhu et al., 2019). 
Several studies from around the world show that more 
urbanized areas tend to harbour a higher relative abundance 
and diversity of alien species than rural and peri-urban areas 
(Aronson et al., 2015; Blair & Johnson, 2008; Cadotte et 
al., 2017; X. Chen et al., 2014; Lowry et al., 2020), and as 
urbanization expands, the numbers of alien taxa in urban 
areas will consequently increase as well. 

Projected trends in plant invasions in Europe under different 
scenarios of future land-use change showed the second 
highest level for urban areas (Chytrý et al., 2012). Most alien 
species in cities and urban areas are intentionally introduced 
ornamental plants that escaped from cultivation (Čeplová 
et al., 2017; Dehnen-Schmutz et al., 2007; McLean et 
al., 2017; Padayachee et al., 2017). Studies in the Czech 
Republic, for example, reveal that 47 per cent of alien 
species now found in cities and beyond were introduced 
intentionally, mostly as ornamentals (Pyšek et al., 2002), and 
work from South Africa showed that twice as many of the 
most abundant alien species in urban areas were originally 
introduced for ornamental purposes compared to non-
ornamental alien species (McLean et al., 2017). Much like 
agriculture, plantings of alien plants in urban settings provide 
suitable habitats for the establishment of alien insects; 
consequently, urban settings and especially street trees tend 
to be hotspots for insect invasions (Branco et al., 2019; Dale 
& Frank, 2017; Paap et al., 2017). 

It is likely that a warmer climate together with urban 
sprawl will increase the invasion risk for cities, especially 
as species from different climatic regions are transported 
elsewhere, and especially from warm regions to temperate 
ones (e.g., Géron et al., 2021; Lososová et al., 2018). For 
Europe, Lososová et al (2018) suggest that alien species 
from regions with warm climates, such as those currently 
limited to southern Europe, are likely to increase their rate 
of spread and colonize the cities of Central and Western 
Europe. Alien insects appear to be especially benefiting from 
increased urban temperatures, for example, alien mosquitos 
in montane cities in South America (Pedrosa et al., 2020) 
and alien scale insects in the United States (Meineke et 
al., 2013).

Status 

The most comprehensive global data set on urban 
floras and bird faunas, based on 110 and 54 cities on 
all continents, respectively, revealed that the numbers of 
alien species differ broadly among cities with a median of 
3.5 alien bird (range: 0–23) and 213 plant species (range: 
38–1058), of the total species richness 112.5 (range: 
24–368) for birds and 766 (range: 269–2528) for plants. 
Among plants, Poa annua (annual meadowgrass), Capsella 
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bursa-pastoris (shepherd’s purse), Stellaria media (common 
chickweed), Plantago lanceolata (ribwort plantain), and 
Phragmites australis (common reed) have established in 
the greatest numbers of cities, while among birds such 
species are Columba livia (pigeons), Passer domesticus 
(house sparrow), Sturnus vulgaris (common starling), and 
Hirundo rustica (barn swallow) (Aronson et al., 2014). 
Further, it appears that intensive land-use change, and 
biotic interchange have increased the similarity of urban 
plant assemblages globally. Cities in disparate regions of 
the globe thus retain regionally distinct native and alien 
plant assemblages (Palma et al., 2017), while invasive alien 
species are associated with lower beta diversity among 
cities (La Sorte et al., 2014). 

The numbers of established alien species of plants, insects, 
herptiles, birds, and mammals, introduced to Europe after 
1500 and occurring in habitats defined according to the 
European Nature Information System were analysed for 115 
regional data sets (Pyšek, Bacher, et al., 2010). Cities in 
Europe on average harbour 70 per cent of established alien 
plants (ranging from 41–100 per cent in individual regions), 
54 per cent (11–76 per cent) of alien insects, 38 per cent 
(0–100 per cent) of alien herptiles, 14 per cent (0–33 per 
cent) of alien birds, and 26 per cent (0–100 per cent) of 
alien mammals. The numbers of established alien plant and 
insect species found in human-made, urban, or cultivated 
habitats were the highest of all habitats, if controlled for 
habitat area in the region (Pyšek, Bacher, et al., 2010). The 
patterns of urban alien diversity have not been summarized 
beyond Central and Western Europe, but studies from 
elsewhere, for example, China, Russia, and Canada, also 
confirm that urban areas tend to contain very high numbers 
of alien species (Cadotte, 2021; Tretyakova et al., 2018;  
Z.-X. Zhu et al., 2019). 

Data and knowledge gaps 

Although urban ecosystems are hotspots for biological 
invasions, the field of invasion science has given scant 
attention to invasion dynamics in towns and cities (Gaertner 
et al., 2017) with the exception of Europe where this topic 
has been subject of research for decades (e.g., Kowarik, 
1995b; Pyšek, 1998; Sukopp, 2002). Many facets of 
biological invasions require elaboration in an urban context 
(Cilliers et al., 2008; Padayachee et al., 2017). The role of 
cities as launching sites for alien species introduction and 
spread into natural areas and as recipients of a range of 
socioecological impacts highlights the need for research 
to address key limitations that hinder the understanding of 
invasion dynamics in urban settings. There have been very 
few urban-rural gradient studies in developing countries 
(Pauchard et al., 2006), or in tropical environments in 
general (Cusack & McCleery, 2014). So far, the relationship 
between levels of urbanization and abundance of alien 
invasive plants in tropical developing countries appears to 

resemble that of temperate developed countries (Lowry 
et al., 2020). Limitations include the dearth of metrics for 
defining urban–wildland/rural gradients and a shortage 
of insights on many aspects of urban invasions in less 
affluent regions (Gaertner et al., 2017). Thus, data on 
alien taxonomic groups other than plants within cities and 
ecoregions surrounding each city is needed. 

2.5.5.2 Cultivated areas (including 
cropping, intensive livestock farming, 
etc.) 
Many introductions and secondary spread of alien 
species occur in cultivated areas. Alien plant species that 
occur as weeds in agricultural areas can be introduced 
as contaminants of seeds, or spread by machinery and 
grazing animals, water channels, etc. In addition, the use 
of plant protection products may promote the development 
of herbicide resistant alien weeds, as in the case of 
Amaranthus, Solanum, etc. In addition, agricultural areas are 
often first sites of new introduction of novel crops, genetically 
modified organisms, biofuel crops, and novel genotypes of 
cultigens. In some parts of the world, ornamental plants are 
also intensively cultivated in agricultural areas (e.g., Booth 
et al., 2003). Cultivated plants also suffer from introduced 
pathogens (e.g., fungal, viral, bacterial).

Various pathways are known to facilitate the accidental 
introduction of insects, pathogens, and other pests (e.g., 
nematodes) into cultivated areas around the world. Many 
groups of insects colonize stored grains and international 
trade in grain has facilitated the global spread of these 
insects such that several important species are established 
in virtually every world region (Morimoto et al., 2019). Other 
important pathways by which insect pests have globally 
spread include international trade in fruits and vegetables 
and global transport of live plants, including soil and planting 
substrates (Kiritani & Yamamura, 2003; Liebhold et al., 
2012). Prior to 1910, there was little recognition of the 
dangers that such international trade posed for introduction 
of agricultural pests, but in the early 1900s many countries 
began to implement regulations aimed at limiting the 
accidental spread of plant pests with plants and plant parts. 
A variety of phytosanitary measures have been developed 
to limit pest movement in international trade, though some 
pathways remain more difficult to control and many species 
continue to be unintentionally introduced (E. Allen et al., 
2017; Hulme, 2014; Chapter 5, section 5 .2 .2).

Trends

Reports on occurrences of alien species on cultivated 
land are usually restricted to plant pathogens, while more 
general comprehensive analyses of trends of alien species 
on cultivated areas are largely lacking. For alien species 
considered as plant pathogens, which mostly consist of 
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arthropods, fungi and oocmycetes, the number of species 
has increased continuously since 1800 with a rise also in 
the rate of annual records until the present (Aukema et al., 
2010; Kiritani & Morimoto, 2004; Nealis et al., 2016; R. M. 
Smith et al., 2018; F.-H. Wan & Yang, 2016). This is very 
likely a result of increased trade activity, particularly of plant 
materials, both in terms of increased volumes and increased 
geographic distances between donor and recipient regions. 
While the number of studies is geographically restricted to 
a few well-sampled regions, global analyses are missing; 
however, it is likely that alien species numbers have been 
increasing as observed in other world regions. 

Status

Agricultural areas in Eastern Europe are the most invaded 
by alien plants of all European regions (Chytrý et al., 2009). 
On arable land there were on average 7.3±9.8 per cent of 
plant species introduced after 1500 in Catalonia (n=506), 
5.6±5.2 per cent in the Czech Republic (n=1441) and 
14.3±25.6 per cent in the United Kingdom (n=989); these 
values represent per centages of all plants recorded in 
vegetation plots 15–200 m2 in size (Chytrý et al., 2008). For 
plants introduced from the beginning of Neolithic agriculture 
until 1500 (Pyšek & Jarošík, 2005), 55.5±13.5 per cent and 
16.2±16.0 were reported for the Czech Republic and the 
United Kingdom, respectively (Chytrý et al., 2008). 

Data from cultivated habitats in Europe comparing alien 
species of plants, insects, herptiles, birds and mammals 
introduced after 1500 showed that as a per cent of the total 
alien species in a region, cultivated habitats on average 
harbour 34 per cent of plants (based on 115 regional 
datasets: median, with range 5–95 per cent), 46 per cent 
(26–66 per cent) of insects, 63 per cent (0–100 per cent) of 
herptiles, 65 per cent (51–85 per cent) of birds, and 30 per 
cent (0–100 per cent) of mammals (Pyšek, Bacher, et al., 
2010). By this measure, cultivated habitats are among those 
with the highest levels of established alien species (Pyšek, 
Bacher, et al., 2010). 

The domestication of plants and their widespread planting 
in agriculture has created unique resources that facilitate the 
establishment of new insect species (Liebhold et al., 2018). 
Across most continents, the historical expansion of plantings 
for agriculture and forestry has been followed by the invasion 
of insects that utilize these crop species as hosts (e.g., 
Hurley et al., 2016; Margaritopoulos et al., 2009).

Data and knowledge gaps 

Information on biological invasions of insects and plants 
in cultivated areas has been systematically collected in 
Europe and North America, likely because they act as pests 
and weeds and negatively impact agricultural production. 
However, information from other parts of the world is scarce.

2.5.5.3 Aquaculture areas 
Inland, coastal, and marine farming is largely based on 
introduced species and a large share of the industry occurs 
in South-East Asia and South America. In addition to being 
an important pathway of introduction for alien species, 
aquaculture facilities can also contain many pathogens, 
parasites, and fouling species unintentionally introduced as 
contaminants with the farmed species and the materials 
used for their production (e.g., K. E. Costello et al., 2021; 
Peeler et al., 2011). Molluscs can carry many non-target 
species with them: for example, several introduced 
marine algal alien species worldwide were transported in 
association with mariculture, mainly of molluscs (Mckindsey 
et al., 2007). In Europe, the production of native oyster 
Ostrea edulis (European oyster) has been greatly impacted 
by the parasite protozoan Bonamia ostreae, one of the 
diseases notifiable to the World Organisation for Animal 
Health (WOAH, founded as OIE; Carnegie & Cochennec-
Laureau, 2004), and also by the parasitic copepod 
Myicola ostreae, both introduced together with Magallana 
gigas (Pacific oyster) (K. E. Costello et al., 2021). Two 
bivalves (Magallana gigas, and Ruditapes philippinarum 
(Japanese carpet shell)) were responsible for the majority 
of introductions of contaminants in Europe (60 species), 
mainly shell foulants or macroalgae used for packaging live 
oysters and clams (Savini et al., 2010). The aquaculture of 
Magallana gigas is likely responsible of the introduction of 
Styela clava (Asian tunicate) in New Zealand, which poses 
a threat to the shellfish aquaculture industry (Forrest et al., 
2011). Many alien species introduced for aquaculture have 
escaped from confined systems, established, and become 
invasive (Ju et al., 2020): for example, the analysis of both 
marine and estuarine species in California showed that 106 
of 126 (84 per cent) introductions were due to aquaculture 
and led to established populations of alien bivalves (K. E. 
Costello et al., 2021).

Trends

Worldwide, the introduction of alien species in aquaculture 
is well-known, but the numbers have significantly increased 
since the 1950s with technological improvements (i.e., 
development of artificial propagation, (Shelton & Rothbard, 
2006)). Other notable increases were reported in the 1960s 
and 1970s with the movement of Tilapia spp. (tilapia) and 
Oreochromis spp. (tilapia). In the 1990s Asian carp (e.g., 
Ctenopharyngodon idella (grass carp), Hypophthalmichthys 
nobilis (bighead carp), Hypophthalmichthys molitrix (silver 
carp)) was used to meet the growing demand of food to 
reduce the harvesting of wild species and to diversify the 
production (De Silva, 2012; De Silva et al., 2006; Naylor et 
al., 2001; Shelton & Rothbard, 2006). This increasing trend 
is consistent across the continents (FAO, 2020), particularly 
in Asia. China, for example, has experienced a notable 
increase of alien species farmed in aquaculture mostly in the 
1990s, even though the introductions started in the 1920s 
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(Casal, 2006; Cook et al., 2008; Y. Lin et al., 2015; J. Liu & 
Li, 2010; Q. Wang et al., 2015; Xiong et al., 2015, 2017). 
A similar increase was reported for Europe beginning in the 
1970s (Olenin et al., 2008; Savini et al., 2010; Turchini & De 
Silva, 2008), and in the Americas (Gozlan, 2008), especially 
in Latin America and the Caribbean since the 1970s-1980s 
with the introduction of salmonids, tilapia, Asian carps and 
shrimps (Shelton & Rothbard, 2006). In the United States, 
many native species are cultured for food, and tilapia and 
Asian carp introduction for food production began in the 
1950-60s (Shelton & Rothbard, 2006). In Africa, aquaculture 
production increased since the 1980s (Shelton & Rothbard, 
2006), relying mainly on introduced Asian carp and African 
tilapia moved within the African continent (Bartley & Marttin, 
2004). In Africa, three waves of fish introductions (a total of 
139 species, 40 per cent for aquaculture) occurred: before 
1949, between 1950-1989, and after 1990 (Satia & Bartley, 
1998). In Oceania, even though few alien species were 
introduced for aquaculture since 1900, this region began 
having an important position in aquaculture production 
during the 1970s (Gozlan, 2008), with alien species making 
up 38 per cent of the production on average (Cook et al., 
2008). Overall, aquaculture is mainly for food production. 
However, the market for ornamental and angling species is 
increasing, especially in Asia, Europe, and North America, 
thus increasing aquaculture-based introductions for this 
purpose (reviewed in Gozlan, 2008). Indeed, in the United 
States, more than half of the 91 fish species introduced 
through aquaculture are ornamental (J. E. Hill, 2008). 

Fish, molluscs, and crustaceans are the most introduced 
taxonomic groups in aquaculture. Aquaculture is 
responsible for the majority of fish introductions globally 
(De Silva et al., 2009; Teletchea, 2019), as confirmed 
by the positive correlation shown between aquaculture 
production and the number of fish species introduced 
to a region (Gozlan, 2008). Overall, the introductions of 
fish started before the other groups, with a first “wave” 
before 1900, followed by other waves in the early 1900, 
after 1950 and after 1960s-70s (Shelton & Rothbard, 
2006): Casal (2006), extracting the data of FishBase, 
reported 3072 fish introductions involving 568 species, with 
aquaculture being the main reason of introduction (40 per 
cent), while in 2008, Gozlan (2008) mentioned 624 fish 
species introduced worldwide, 51 per cent of them for 
aquaculture. Freshwater fish, particularly Cyprinus carpio 
(common carp), tilapia (specifically Oreochromis niloticus 
(Nile tilapia) is the main farmed tilapia), Salmo trutta (brown 
trout), and Oncorhynchus mykiss (rainbow trout) are the 
most introduced for aquaculture production (De Silva, 
2012; Teletchea, 2019). Only 15 marine fish have been 
introduced for aquaculture (Atalah & Sanchez-Jerez, 2020). 
In contrast, all molluscs introduced for aquaculture are 
marine (19 species reported in (De Silva, 2012; X. Guo, 
2009), with Magallana gigas (Pacific oyster) being one of 
the most successfully introduced aquatic alien species 

throughout the world since the end of nineteenth century 
in United States, Canada, Europe, Australia, New Zealand, 
Mexico, Peru, Chile, Argentina, and South Africa (De Silva, 
2012; X. Guo, 2009). The other alien mollusc species were 
mostly introduced in the 1960s and from the 1980s (X. Guo, 
2009). In the last twenty years, the most widely introduced 
alien species were reported from the eastern Pacific, 
such as Penaeus vannamei (whiteleg shrimp) reported by 
Fernández de Alaiza García Madrigal et al. (2018); in 2013, 
its production of 4.3 million tons represented 64 per cent 
of the global farmed shrimp production. Finally, since the 
1970s, many alien seaweeds have been unintentionally 
introduced through aquaculture, while very few species were 
intentionally introduced for production (FAO, 2020; Pickering 
et al., 2007).

Status

Asia is considered the “backbone of global aquaculture 
production” (De Silva, 2012) with its contribution to over 
90 per cent to the sector (De Silva et al., 2009); aquaculture 
heavily relies on alien species (De Silva et al., 2006, 2009; 
Ju et al., 2020), particularly, in China, the leading global 
aquaculture producer (more than 60 per cent of the global 
production, Cao et al., 2015; Q. Wang et al., 2015). In 
China, alien species (a total of 179 species, Y. Lin et 
al., 2015) are involved for over 25 per cent of the total 
production (Xiong et al., 2017), compared to the 17 per cent 
of global production of alien species (Shelton & Rothbard, 
2006). Asia also stands out for the widely cultured species 
of Penaeus vannamei (whiteleg shrimp), introduced in 1978 
in Asia, with contributions from China, Thailand, Indonesia, 
and Vietnam to most of the world’s shrimp production 
(Liao & Chien, 2011). In Europe, at least 703 alien species 
introduced to aquatic ecosystems for aquaculture and 
stocking activities have been reported: fish, crustaceans 
and molluscs are the most introduced taxonomic groups 
(Olenin et al., 2008; Savini et al., 2010; Teletchea, 2019; 
Turchini & De Silva, 2008). In Europe, alien species (mostly 
Oncorhynchus mykiss (rainbow trout), Hypophthalmichthys 
molitri (silver carp) and Cyprinus carpio (common carp)) 
contributed 67 per cent of freshwater aquaculture 
production, mainly in Western areas with a range of 
88-98 per cent (Turchini & De Silva, 2008). The highest 
production of introduced marine fish is concentrated in the 
Magellanic province of southern Chile that is considered 
at risk of environmental impacts caused by escapees from 
the confined environment (Atalah & Sanchez-Jerez, 2020). 
Recent planning for diversification in aquaculture reports 
advised for a shift towards producing more native than alien 
species (Harvey et al., 2017).

The worst impacts on aquaculture production have 
been caused by the oomycete Aphanomyces astaci, the 
causative agent of the crayfish plague. Vectored by North 
American crayfish introduced to Europe for aquaculture, 
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this plague dramatically reduced native populations and 
the production of native European crayfish (De Silva et al., 
2009). Many pathogens can also be carried by alien finfish, 
especially cyprinids: at least 226 parasite species (34 of 
which causing important diseases worldwide) have been 
found in Cyprinus carpio (common carp), one of the most 
introduced alien species (Jeney & Jeney, 1995). In Europe, 
the seven most farmed cyprinids led to the introduction of 
31parasites⁄disease agents (Savini et al., 2010). Similarly, in 
South Africa many parasites have been introduced with fish 
and crayfish used for fisheries and aquaculture (Weyl et al., 
2020). Despite the high number of pathogens transferred 
by alien farmed fish, a large-scale mass mortality of farmed 
fish due to introduction of associated pathogens has not 
yet been recorded (De Silva et al., 2009). Still, alien farmed 
shrimps can carry several diseases that lead to important 
outbreaks in the facilities and relevant economic losses, 
especially in Asia (Briggs et al., 2004). 

Data and knowledge gaps 

The Food and Agriculture Organization (FAO) Database on 
Introductions of Aquatic Species (DIAS) (FAO, 2021) reports 
the introduction of alien species per country, providing also 
global maps of species introduced for aquaculture and 
a focus on some alien species, such as Cyprinus carpio 
(common carp) and Oreochromis niloticus (Nile tilapia). In 
general, there is considerable information available for Asia, 
the leading continent for aquaculture production, and for 
Europe and Latin America while for other regions information 
is often lacking. Recent reviews addressed fish, molluscs 
and shrimp situations. Studies on temporal trends are 
limited and mainly available for the three main taxonomic 
groups fish, molluscs, and crustaceans.

2.5.5.4 Coastal areas intensively used 
for multiple purposes by humans 

Trends 

Accumulation rates of established alien species in coastal 
marine waters frequently show a pattern of exponential 
accumulation through time, with the number of new 
reports increasing dramatically during the last 30 years 
with increased awareness and research effort (Bailey et 
al., 2020; Leppäkoski et al., 2002; Ruiz et al., 2015). The 
earliest substantiated reports of established alien marine 
species date to at least the 1200s (Ojaveer et al., 2018). 
The type of transported taxa has changed over time as 
shipping pathways have modernized. For example, historical 
use of solid ballast, such as rocks, sand, and dirt, was 
associated with the transportation of seeds and insects 
while the modern use of seawater ballast correlates with 
introductions of aquatic taxa ranging from microbes and 
protists to macroinvertebrates and fishes (Bailey, 2015). 
There are also now fewer intentional introductions of fishes 

and macroinvertebrates into the natural environment, likely 
because the potential negative impacts of such releases are 
now better understood (Bailey et al., 2020). 

While the rate of new alien species records has levelled off 
and even declined since 2010, possibly due to regulations 
for ships’ ballast water and improved practices by the 
aquaculture industry (Bailey et al., 2020; Chapter 5, 
section 5 .51), expectations of continued global shipping 
growth suggest the risks of biological invasions could 
increase significantly by 2050 without management of 
shipping-mediated vectors (Sardain et al., 2019) thus 
underscoring the importance of existing instruments to 
prevent introductions via ballast water and biofouling. 
The construction and successive enlargement of canals 
connecting previously unconnected waterbodies has been 
responsible for a growing number of established alien 
species in the Mediterranean (Galil et al., 2017). Similarly, it 
has been projected that the recent expansion of the Panama 
Canal could triple the number of established alien species 
arriving in the Gulf of Mexico and the North American East 
Coast (Muirhead et al., 2015). In regions such as the Arctic, 
the changing environmental conditions and the dramatic 
increase in shipping activity are likely to favour the transport 
and introduction of new alien species. This increase in 
alien species is likely to reconfigure the global dynamics of 
invasive alien species, potentially reshaping marine habitats 
and ecosystem functions, especially in coastal regions 
(Goldsmit et al., 2020; Miller & Ruiz, 2014). 

Status

There has been extensive research and surveillance of 
coastal marine alien species in Central and Western Europe, 
with more than 4,350 detection records for at least 1,370 
introduced species of alien or unknown (cryptogenic) origin 
(AquaNIS, 2015). More than 450 marine alien species have 
been recorded off the Israeli Mediterranean coast – which 
serves as a gateway for introductions from the western 
Indian Ocean and Red Sea, through the Suez Canal, to the 
Mediterranean Sea (Galil et al., 2021a).

Coastal areas are generally prone to biological invasions. 
In a global study of established alien species richness of a 
number of taxonomic groups, Dawson et al. (2017) found 
that hotspots are, other than islands, predominantly coastal 
mainland regions.

In the Americas, at least 450 alien species are reported 
from continental North America (Ruiz et al., 2015), and 
approximately 300 other species from Hawaii (Carlton & 
Eldredge, 2009). Reported numbers are lower in South 
America, with 129, 138, and 53 species reported from the 
south-west Atlantic, Brazil, and the Galápagos Islands, 
respectively (Carlton et al., 2019; Schwindt et al., 2020; 
Teixeira & Creed, 2020). Despite the low number of 
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reported alien species, the coastal environments of the 
south-west Atlantic were affected by one of the largest 
continental-scale bioinvasion events ever recorded, and 
which has reshaped vast coastal-marine ecosystems, 
modifying their coastal geomorphology, biodiversity, 
primary and secondary productivity in the Americas and 
Asia (Bortolus et al., 2015, 2019; Qiu, 2013). Researchers 
have shown that what are now extensive Sporobolus 
alterniflorus (smooth cordgrass) marshes in this region, 
were probably bare mudflats centuries ago, and that the 
Sporobolus alterniflorus introduction might have led to vast 
unrecorded shifts in bird, fish, and invertebrate biodiversity, 
and immense shifts in algal vs. detritus production, with the 
concomitant trophic cascades that these changes imply 
(Bortolus et al., 2015, 2019). Reports of mudflat conversion 
by Sporobolus alterniflorus with distinct ecological 
consequences have also been reported from China (B. Li et 
al., 2009). Similarly, the coastal systems of North America 
have been transformed by an introduced genotype of the 
macrophyte Phragmites australis (common reed) causing 
whole ecosystem and habitat transformations (Bowen 
et al., 2017; Chambers et al., 1999; Cronin et al., 2015; 
Dibble & Meyerson, 2014). 

In the Asia-Pacific region, at least 650 marine alien and 
cryptogenic species are reported from New Zealand 
(Seaward & Inglis, 2018), with another 343 introduced and 
cryptogenic species reported from Australia (Sliwa et al., 
2008), and 213 alien species reported from China (Xiong et 
al., 2017). At least 95 alien and 39 cryptogenic species are 
reported from South Africa (T. B. Robinson et al., 2016), with 
most of the African continent being understudied. 

From1965-2015, at least 1,400 unique alien species have 
been reported as being introduced in coastal ecosystems – 
approximately one new species detected every 8 days for 
the last fifty years (Bailey et al., 2020). 

Data and knowledge gaps 

Records of alien species in coastal environments are more 
reliable in recent decades as the awareness of alien species 
introductions and their potential negative impacts began to 
increase. However, data are still limited for many taxonomic 
groups and regions of the world (especially Africa, Meso- 
and South America and Asia) (Bailey et al., 2020). Aquatic 
alien species are frequently under-reported due to limited 
research intensity and insufficient taxonomic expertise 
(especially for smaller-bodied organisms) (Carlton & Fowler, 
2018; Ojaveer et al., 2017). Reliable records of alien species 
introductions exist mainly for plants and animals, with fungi, 
protists, and microbes generally being understudied.

An accurate number of alien species introduced across 
global coastal waters is difficult to estimate since organisms 
were being transported around the world by ships for 

centuries before inventories of species in the marine 
environment, resulting in an inability to determine the 
true origin of a large proportion of species within coastal 
communities (Bortolus et al., 2015; Carlton, 1996; Hewitt 
et al., 2004; Schwindt et al., 2020). There can also be long 
time lags after the initial introduction and establishment 
of a new population until its discovery (C. J. Costello & 
Solow, 2003; C. M. Taylor & Hastings, 2005), unless regular 
and targeted monitoring is taking place (Hayes et al., 
2019). In many regions of the world, regular surveillance is 
hampered by inadequate resources and limited access to 
taxonomic expertise (Ojaveer et al., 2014). The number of 
alien introductions is therefore certainly much higher than 
published literature suggests. 

The study of invasive alien vascular plant species introduced 
in the marine-coastal environments of South America is 
currently one of the largest gaps to cope with. Besides a 
few classic examples including genera such as Tamarix 
(tamarisk), Carpobrotus, Ammophila, Sporobolus, or Salsola 
(Schwindt et al., 2018), there is little research effort in this 
area and no updated review or synthesis revising the list of 
plant invasive alien species for this region. Large regions 
like South America have invested little effort (e.g., relative 
to Europe or North America) to recording and monitoring 
the introduction of alien species. This lack of data has often 
been misunderstood as an actual lack of invasive alien 
species. This knowledge gap seriously hampers the ability 
to recognize pre-existing native ecosystems (i.e., Ecological 
Mirage Hypothesis; Bortolus et al., 2015; Bortolus & 
Schwindt, 2007). On the other hand, there is currently an 
increase in the number of researchers investigating invasive 
alien species in this region (Schwindt & Bortolus, 2017), 
which will likely increase the number of reports of introduced 
species for the region. Nevertheless, this increase is not 
necessarily, or strictly, due to new introductions, but could 
also include introductions long overlooked and ignored. For 
instance, in 2017 scientists found that what was until then 
considered a native alga, Melanothamnus harveyi (Harvey’s 
siphon weed), was in fact the earliest record of an alien 
coastal marine species for the region, being first reported in 
1872 under the name of Polysiphonia argentinica (Schwindt 
et al., 2020). Similarly, Sporobolus alterniflorus (smooth 
cordgrass) was recognized as alien to the southern Atlantic 
coastal environments by 2015, nearly two centuries after its 
introduction (Bortolus et al., 2015).

Finally, the lack of research on emerging or understudied 
transportation pathways, such as the aquarium and bait 
trades, internet commerce and anthropogenic marine litter 
(e.g., M. L. Campbell et al., 2017; J. T. Carlton et al., 2017; 
Fowler et al., 2016; Lenda et al., 2014), likely results in gaps 
of knowledge. This knowledge gap refers to the relative 
importance of different introduction mechanisms and the 
corresponding management priorities for reduction of future 
introductions of aquatic alien species. 



THE THEMATIC ASSESSMENT REPORT ON INVASIVE ALIEN SPECIES AND THEIR CONTROL

188

Box 2  11   Good Quality of Life: A global assessment of trends and status of invasive alien 
species .

Invasive alien species are a significant and growing threat 
worldwide to the good quality of life (i.e., the achievement 
of a fulfilled human life, see IPBES glossary6 for a complete 
definition) for many communities (Costanza et al., 2006). 
A literature review conducted by the authors of Chapter 4 
identified about 1050 invasive alien species that impact good 
quality of life (Chapter 4, Figure 4 .2). In most cases (841 
cases), the reported impacts negatively affected good quality 
of life, while in 212 cases, benefits of invasive alien species 
were reported. However, it is critical to note that a benefit 
from an invasive alien species in one sector does not mitigate 

6. IPBES glossary: https://ipbes.net/glossary

the harm caused elsewhere, and that the same invasive 
alien species may both cause harm and produce a benefit. 
Integrating this invasive alien species list and the distributional 
data provided in this chapter (section 2 .1 .4 for data details) 
reveals that the United States, Australia, New Zealand, 
multiple European countries, China, Japan, Canada, Mexico, 
and South Africa were the countries with highest numbers 
of invasive alien species with impacts (negative or positive) 
on the good quality of life (Figure 2 .36). This pattern largely 
reflects the distribution of all identified alien species (Figure 
2 .5) suggesting that in general, more impacts on good 
quality of life have been reported where more alien species 
were found.

Figure 2  36   Map of invasive alien species numbers with reported impacts on good 
quality of life . 

Species were identified through the literature review conducted by Chapter 4 of this assessment (data management report 
available at: https:/doi.org/10.5281/zenodo.5766069) and the distributions of these species were extracted from the database 
used in Chapter 2 (section 2 .1 .4 for further details about data sources and data processing). Note numbers presented may 
deviate from those reported in the text due to variation among data sources. A data management report for the data underlying 
this figure is available at https://doi.org/10.5281/zenodo.7615582

The total number of invasive alien species with impacts on 
good quality of life has risen continuously at a nearly linear 
rate since around 1830 (Figure 2 .37). During this time, the 
rate of increase remained relatively constant at around 15 new 
invasive alien species with impacts on good quality of life per 
five years (or three new species annually).

Most invasive alien species with impacts on good quality of 
life were insects (38 per cent), followed by vascular plants 
(29 per cent), fishes (7 per cent), molluscs (5 per cent), and 
mammals (5 per cent). Numerous widespread, well-known 
invasive alien species often negatively affect various aspects 
of good quality of life including culture, human health, and the 
local economy. High profile examples include fish species of 
the genus Oncorhynchus (trout and salmon) that have been 

introduced in many parts of the world (Crawford & Muir, 2008) 
and have changed local economies and livelihoods in areas. 
Such impacts include hybridization with native species and 
predation of native fishes (Kitano, 2004; Soto et al., 2001; 
Woodford & Impson, 2004). The introduction of Lates niloticus 
(Nile perch) has changed the local socio-economic dynamics 
such as a decline in multi-fisheries subsistence and livelihood 
(Njiru et al., 2018). In particular, women from marginalized 
communities have been disadvantaged by the effects of Lates 
niloticus on subsistence cichlid-based fisheries, and have had 
to adopt new livelihood practices, with prostitution being a 
primary one. This has, in turn, spurred inequality, social conflict, 
health issues (spread of human immunodeficiency virus (HIV) 
in particular), the loss of cultural practices, and reduced food 

https://ipbes.net/glossary
https://zenodo.org/records/5766070
https://doi.org/10.5281/zenodo.7615582
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Figure 2  37   Trends in numbers of invasive alien species with reported impacts on good 
quality of life .

Trends are shown as cumulative numbers (left panel) and as rate of increase (i.e., numbers of species per five years) (right 
panel). The smoothed trend (line) is calculated as running median (section 2 .1 .4 for further details about data sources and 
data processing). Species were identified through the literature review conducted by Chapter 4 of this assessment (data 
management report available at: https:/doi.org/10.5281/zenodo.5766069) and the trends for these species were extracted from 
the database used in Chapter 2 (section 2 .1 .4 for further details about data sources and data processing). Note numbers 
presented may deviate from those reported in the text due to variation among data sources. A data management report for the 
data underlying this figure is available at https://doi.org/10.5281/zenodo.7615582

security for local communities, thus affecting human well-being 
(R. T. Shackleton et al., 2018). 

Another prominent example for an invasive alien species 
with impacts on good quality of life is Spodoptera frugiperda 
(fall armyworm). This alien insect pest has been spreading 
for decades and has wide-ranging impacts in many parts 
of the world including economic losses from reduced maize 
crop yields (Dassou et al., 2021; De Groote et al., 2020) and 
reduced local livelihood potential (Kassie et al., 2020). The 
species is likely to spread further due to suitable climatic 
conditions (Day et al., 2017; Early et al., 2018). As another 
example, Prosopis spp. (mesquite) is one of the most widely 
distributed invasive tree species globally. These species have 
invaded many arid and semi-arid parts of the world, thereby 
reducing water available for humans and animals (Bekele et 

al., 2018; Shiferaw et al., 2021), impacting human health via 

allergies, asthma, and physical injuries (Al-Frayh et al., 1999; 
Mwangi & Swallow, 2008), increasing malaria prevalence due 
to habitat provision (Muller et al., 2017), reducing grazing 
capacity (S. Kumar & Mathur, 2014; Mwangi & Swallow, 
2008; Ndhlovu et al., 2011), and impacting local economies 
through increased management costs and loss of grazing (R. T. 
Shackleton et al., 2014).

Focusing more specifically on Indigenous Peoples and local 
communities (i.e., typically ethnic groups who are descended 
from and identify with the original inhabitants of a given region; 
IPBES glossary7) and good quality of life, the assessment 

7. IPBES glossary: https://ipbes.net/glossary

identified and assessed 131 regional case studies worldwide of 
the impacts of invasive alien species on the good quality of life 
and their effects for Indigenous Peoples and local communities. 
The most frequently reported species in the case studies 
were first identified, then species and their impacts on good 
quality of life concerning taxonomic groups, units of analyses, 
and IPBES regions. The findings suggested that the biggest 
impacts were from plant species (85 species, 65 per cent), of 
which most (79 species) were woody vascular plants.

The three most frequently reported invasive alien plants 
(38 cases) included either alone or in combination with other 
species were: Lantana camara (lantana), Prosopis spp., and 
Chromolaena odorata (Siam weed). Aquatic invasive alien 
plant species were reported in only six case studies. These 
included Pontederia crassipes (water hyacinth), Phragmites 

australis (common reed), Hydrilla verticillate (hydrilla), and 
Cryptostegia grandiflora (rubber vine), amongst others. Overall, 
fewer case studies (46 case studies) reported invasive alien 
species’ impact on good quality of life for other taxonomic 
groups. These taxa included fish species (10 species) such 
as Cyprinus carpio (common carp), Tilapia rendalli (redbreast 
tilapia), Oreochromis mossambicus (Mozambique tilapia), 
and Lates niloticus, Oncorhynchus mykiss (rainbow trout). 
Insects (12 studies), were also reported including Spodoptera 

frugiperda, and Agrilus planipennis (emerald ash borer). Other 
taxa were not reported in any case studies.

The majority of case studies (60 per cent; 79 case studies) 
reported negative impacts of invasive alien species, while 
others reported both negative and positive impacts. Examples 

https://zenodo.org/records/5766070
https://doi.org/10.5281/zenodo.7615582
https://ipbes.net/glossary
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Box 2  11  

include Opuntia ficus-indica (prickly pear), which is used 
for fodder and fence lines but has thorns that cause injury 
to humans and animals (S. E. Shackleton & Shackleton, 
2018). Positive impacts of invasive alien species include feral 
pigs that provide meat (C. J. Robinson & Wallington, 2012), 
woody plants (e.g., Acacia, Prosopis, Eucalyptus) that provide 
biomass for compost, timber and wood charcoal production 
(Rogers et al., 2017; Tassin et al., 2012; B. W. van Wilgen, 
2012), shade (S. E. Shackleton & Shackleton, 2018), products 
to sell (Tilahun et al., 2017), and medicinal benefits (Witt et al., 
2019). Despite the benefits provided, the positive impacts of 
invasive alien species on good quality of life do not counteract 
their negative impacts.

Knowledge and data gaps

There were large differences in the number of studies from the 
different IPBES regions potentially representing knowledge 
and data gaps on the effects of invasive alien species on 
good quality of life. Asia and the Pacific had the most studies 
(54), followed by Africa (44), the Americas (28), and Europe 
and Central Asia (3). There appears to be a bias in case 
studies towards reporting the effects of invasive alien woody 
vascular plants (65 per cent) on good quality of life since 
there were many fewer case studies on other widespread 
alien species groups, particularly invertebrates, microbes, and 
mammals (5 per cent).

2.6 FUTURE DYNAMICS OF 
BIOLOGICAL INVASIONS

This section reports on the projected future dynamics of 
the trends and distribution of alien and invasive alien animal 
species in general (section 2 .6 .1), for animals (section 
2 .6 .2), plants (section 2 .6 .3), and microorganisms (section 
2 .6 .4), and addresses limitations for assessing future 
dynamics of biological invasions (section 2 .6 .5). 

2.6.1 Overview of future dynamics 
of biological invasions

Recent increases in data availability and accessibility provide 
an improved baseline understanding of historic and current 
alien species richness and distributions that help to make 
new and improved projections (E. E. Dyer, Cassey, et al., 
2017; Pagad et al., 2022; Seebens, Blackburn, et al., 2017; 
van Kleunen et al., 2019). However, many gaps still exist 
at the regional and taxonomic scales (Pyšek et al., 2008). 
Approaches to forecast dynamics of biological invasions vary, 
including expert-based systems (e.g., based on individual 
experts in their field, Indigenous and local knowledge 
systems (Glossary), horizon scanning approaches), various 
modelling approaches (e.g., expert-based models, correlative 
models, process-based models, hybrid models; Chapter 
1, section 1 .6 .7 .3) or scenario approaches (exploratory 
scenarios, target-seeking scenarios, policy-screening 
scenarios; Chapter 1, section 1 .6 .7 .3).

Generally, prediction and projection studies have been 
conducted from regional, continental to global scales 
(Bellard, Thuiller, et al., 2013; Dullinger et al., 2017) 
illustrating the potential current and future numbers and 
distribution of alien species. Studies cover one to multiple 
species within (e.g., cacti: Masocha & Dube, 2018; termites: 

Buczkowski & Bertelsmeier, 2017; ants: Bertelsmeier et al., 
2015, 2016; Fournier et al., 2019) and across taxonomic 
groups (e.g., the 100 worst invaders globally as assessed 
by the IUCN ISSG: Bellard, Thuiller, et al., 2013; Gallardo et 
al., 2017).

On the global scale, quantitative projections of established 
alien species numbers under a business-as-usual scenario 
do exist for the period from 2005–2050 (Seebens, Bacher, 
et al., 2021). For seven major taxonomic groups established 
alien species numbers are projected to increase across 
eight continental regions (Figure 2 .38). At the continental 
scale, the strongest relative increase in established alien 
species numbers of 64 per cent (2,543 ± 237 species) is 
expected for Europe, followed by temperate Asia (50 per 
cent; 1597 ± 197) and South America (49 per cent; 1,391 
± 258). Globally, an average relative increase of 36 per 
cent, equivalent to 1,195 ± 131 new established alien 
species is projected (Seebens, Bacher, et al., 2021). A list 
of relative and absolute projected increases of established 
alien species numbers until 2050 is given in Table 2 .28. 
However, given the projected acceleration of the majority 
of direct and indirect drivers of change in nature, it is likely 
that the numbers of established alien species will be higher 
than those predicted in the business-as-usual scenario 
(Table 2 .28). Comparing past and future trends, the rate of 
increase of established alien species numbers is expected 
to increase even further (i.e., acceleration) for arthropods 
and – to a lower degree – birds worldwide. In contrast, rates 
are projected to decline for mammals globally and partly for 
fishes, although rates are still positive, resulting in more alien 
species, but at a lower rate than observed before (Seebens, 
Bacher, et al., 2021). However, the number of alien and 
invasive alien species is expected to rise even without 
the introduction of any new species by humans, because 
the majority of already established alien species are still 
spreading (Seebens, Blackburn, et al., 2021). Thus, already 
established alien species are likely to spread further also to 
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Figure 2  38  Projected trends of established alien species numbers until 2050 .

Projections are shown for seven major taxonomic groups across eight global regions and based on a business-as-usual scenario 
that assumes that drivers facilitating biological invasions will develop in the future as has been observed during recent decades. For 
vascular plants, birds, and fishes a spatial bias correction was applied to account for spatial heterogeneity in data availability. This was 
not possible for the other taxonomic groups due to data deficiency. Trend lines show averaged trends out of repeated simulations, 
while variation around the means is indicated by shaded areas. From Seebens et al. (2021), https://doi.org/10.1111/gcb.15333, 
under license CC BY 4.0.

Table 2  28   Projected relative (per cent) increases of established alien species numbers 
until 2050 . 

Projections are representative for a business-as-usual scenario, assuming similar developments in drivers facilitating biological 
invasions as observed in the past. Values are mean estimates over 100 model runs with the upper and lower 2.5 per cent confidence 
interval given in square brackets. The absolute established alien species numbers increase averaged more than 100 model runs are 
provided in round brackets together with the standard deviation estimates. Data are from Seebens, Bacher, et al. (2021).

Africa Australasia Europe
Northern 
America

Pacific 
Islands

South 
America

Temperate 
Asia

Tropical 
Asia

Mammals 14 [2, 29] 
(12±3)

13 [0, 167] 
(8±9)

16 [1, 46]
(10±9)

0 [0, 10] 
(0±1)

Birds 42 [0, 75] 
(59±26)

5 [1, 9] (9±4) 88 [44, 139] 
(299±53)

42 [32, 46] 
(138±11)

9 [1, 29] 
(24±22)

60 [10, 70] 
(115±20)

67 [36, 91] 
(78±15)

Fishes 49 [1, 75] 
(96±39)

59 [37, 104] 
(175±32)

20 [2, 70] 
(54±57)

0 [0, 1] (0±0) 16 [1, 96] 
(25±39)

42 [7, 62] 
(165±48)

10 [0, 76] 
(31±34)

Arthropods 51 [0, 73] 
(109±51)

15 [13, 18] 
(212±14)

69 [48, 85] 
(1072±92)

30 [24, 34] 
(927±31)

26 [1, 35] 
(70±17)

99 [0, 130] 
(582±249)

117 [57, 145] 
(445±87)

35 [0, 58] 
(24±13)

Molluscs 93 [59, 135] 
(170±31)

32 [2, 47] 
(21±7)

53 [3, 73] 
(116±40)

Crustaceans 100 [51, 117] 
(273±34)

56 [10, 90] 
(36±8)

47 [0, 76] 
(66±18)

Vascular plants 14 [4, 19] 
(503±113)

28 [22, 29] 
(1065±41)

24 [16, 39] 
(997±209)

6 [1, 7] 
(365±33)

1 [0, 2] 
(38±9)

21 [18, 25] 
(669±52)

41 [28, 54] 
(987±170)

10 [0, 17] 
(227±67)

https://doi.org/10.1111/gcb.15333
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neighbouring regions, which will result in further increases in 
alien species numbers regionally.

A literature review8 on studies including models and 
scenarios of biological invasions shows that the current 
literature is dominated by correlative model approaches 
(57 per cent) and correlative scenarios (87 per cent) and that 
these studies mainly explore either long-term (2050-2100) or 
short-term (until 2030) trends (42 per cent and 30 per cent 
respectively) (Chapter 1, section 1 .6 .7 .3). 

The remainder of this section provides an overview of the 
general trends of predicted and projected alien species 
richness and distributions for different taxonomic groups 
and across scales.

2.6.2 Animals

For some bird species, such as Corvus splendens (house 
crow) and Acridotheres tristis (common myna), the current 
distributions indicate a large potential to spread to new 
areas (Magory Cohen et al., 2019; Nyári et al., 2006). 
Similarly, mammals such as Sus scrofa (feral pig), Herpestes 
javanicus auropunctatus (small Indian mongoose), and 
Procyon lotor (raccoon) often have a large potential of future 
invasions worldwide (Lewis et al., 2017; Louppe et al., 2019, 
2020). In the marine realm, a study of 19 ascidian species 
finds a large invasion potential especially at higher latitudes 
(Lins et al., 2018). For insects, several studies investigated 
the invasion potential of agricultural pest species (e.g., 
Phthorimaea operculella (potato tuber moth) (Kroschel 
et al., 2013), Bactrocera carambolae (carambola fruit fly) 
(Marchioro, 2016), Diabrotica spp. (e.g., cucumber beetles) 
(Marchioro & Krechemer, 2018), Bemisia tabaci (tocacco 
whitefly) (Ramos et al., 2018), Spodoptera frugiperda (fall 
armyworm) (Early et al., 2018), Halyomorpha halys (brown 
marmorated stink bug) (Kriticos et al., 2017), Drosophila 
suzukii (spotted wing drosophila) (L. A. dos Santos et al., 
2017)), and all studies found a high risk of invasion beyond 
the current realized distribution. Although less investigated, 
high invasion potentials have also been identified for other 
insect species (e.g., Fournier et al., 2019; He et al., 2012; 
H. Li et al., 2006; Peacock & Worner, 2006). A study on 
the potential biological invasion risk of protected areas 
worldwide found that 95 per cent of the protected areas 
have high habitat suitability for alien mammal species across 
11 taxonomic groups (X. Liu et al., 2020).

An analysis of the 100 worst invaders of the world (as 
assessed by the IUCN ISSG) found a decreased potential for 
future global distribution of mammals, birds, fishes, reptiles, 
and amphibians, but an increase in distributions of aquatic 

8. Data management report available at: https://doi.org/10.5281/
zenodo.5706520

and terrestrial invertebrates due to region specific projected 
changes in climate and land-use, using an ensemble 
species distribution models approach (Bellard, Leclerc, et 
al., 2013). Other global and regional studies have focused 
on the future invasion potential for species from different 
taxonomic groups such as ants and termites (projected 
increases for 12 out of 13 species; e.g., Bertelsmeier et 
al., 2013b, 2015; Buczkowski & Bertelsmeier, 2017; Y. 
Chen, 2008), beetles (projected increase; e.g., Berzitis et 
al., 2014; Kistner-Thomas, 2019; C. Wang et al., 2017), 
flies (northward shift and decrease in global suitability; e.g., 
Capinha et al., 2014; M. P. Hill et al., 2016; Qin, 2019; S. F. 
Ryan et al., 2019), other insects (projected increase; e.g., 
M. P. Hill et al., 2017; Lu et al., 2020), amphibians (projected 
stable distribution or increase; e.g., Ficetola et al., 2010; 
Forti et al., 2017; Ihlow et al., 2016), fish (projected increase; 
e.g., Dong et al., 2020; Kramer et al., 2017) and mammals 
(projected increase; e.g., Louppe et al., 2019, 2020). 

Under different scenarios of change of the global shipping 
network, which constitutes a major driver responsible for 
biological invasions (Chapter 3, section 3 .2 .3 .1), and 
across taxonomic groups, high invasion risks have been 
identified for Asia and Europe (especially the Mediterranean) 
with a projected significant increase in the global invasion 
risk without management of shipping-mediated vectors 
(Sardain et al., 2019). A risk assessment in the 19 Arctic 
ecoregions identified hotspots of future invasion for 
23 invasive planktonic and benthic species in Hudson 
Bay, Northern Grand Banks/Labrador, Chukchi/Eastern 
Bering Seas and Barents/White Seas (Goldsmit et al., 
2020). Contrary to the projected Arctic expansion of the 
species their global projected range contracted, indicating 
a northward shift of future invasions (Goldsmit et al., 
2020). Mammal species, such as Procyon lotor (raccoon) 
and Herpestes javanicus auropunctatus (small Indian 
mongoose), are expected to shift to higher latitudes (Louppe 
et al., 2019, 2020). Studies of individual fish species project 
potential future invasion risk across continents and at the 
regional scale (Dong et al., 2020; Kramer et al., 2017). 
For amphibians, two frog species (Xenopus laevis (African 
clawed frog) and Lithobates catesbeianus (American 
bullfrog)) are projected to have stable to decreasing future 
distributions under climate change (Ficetola et al., 2010; 
Ihlow et al., 2016). For insects, future potential distributions 
under climate change scenarios project poleward shifts 
(Capinha et al., 2014; M. P. Hill et al., 2016; Kistner-Thomas, 
2019; Qin et al., 2019) with many species increasing 
their potential distributions (Bellard, Thuiller, et al., 2013; 
Bertelsmeier et al., 2015; Buczkowski & Bertelsmeier, 2017; 
Y. Chen, 2008; Lu et al., 2020; Qin et al., 2019). At the 
same time, some insect species’ distributions (e.g., Aedes 
aegypti (yellow fever mosquito), Pheidole megacephala 
(big-headed ant)) are projected to decrease as well, with the 
declines mainly located in tropical regions (Bertelsmeier et 
al., 2013b; Capinha et al., 2014; S. J. Ryan et al., 2019).

https://doi.org/10.5281/zenodo.5706520
https://doi.org/10.5281/zenodo.5706520
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In summary, the suite of studies available for projections 
of future dynamics of alien species suggests that overall 
ranges of alien species are expected to increase in most 
cases although with large variation due to a continuous 
introduction of new individuals and an expansion of ranges 
to other suitable habitats. In addition, ranges are expected 
to shift poleward because of global warming (Walther et 
al., 2009). The total number of alien species is expected to 
increase until 2050 for most investigated taxonomic groups 
such as birds, fishes, mammals, arthropods, molluscs, and 
crustaceans (Seebens, Bacher, et al., 2021). These trends 
are consistent across all continents except alien birds in 
Europe, alien mammals in tropical Asia, and alien fish on 
Pacific Islands, which are projected to reach a plateau. 
Relative increases between 2005 and 2050 range between 
117 per cent (arthropods in temperate Asia) and 5 per cent 
(birds in Australasia) (Seebens, Bacher, et al., 2021). 

2.6.3 Plants

Potential hotspots of alien plants have been identified by 
modelling the distribution of individual plant species and 
projecting the distribution under future environmental 
conditions. For the 100 worst invaders (as defined by the 
IUCN), Europe, northern North America, and Oceania 
emerge as potential hotspots for invasion (Bellard et al., 
2016), while potential hotspots for cacti emerge in the 
Mediterranean, tropical savanna regions, and xeric shrubland 
biomes (Masocha & Dube, 2018). Other global studies on 
large sets of alien plant species identify high invasion risk in 
Europe, South America, North America, southwest China 
and New Zealand as well as the coast of West Africa and the 
southern coast of Asia (J.-Z. Wan et al., 2016; Y. Wang & Xu, 
2016). Regions of high invasion risk change depending on 
the taxa under investigation. For 10 parasitic Orobanchaceae 
species tropical and subtropical regions are most suitable 
for potential future invasions (Mohamed et al., 2006). Higher 
potential future suitability has also been projected along 
roadsides (Azan et al., 2015) and at the margins and buffer 
zones of protected areas (Gallardo et al., 2017; Paclibar & 
Tadiosa, 2019), while potential future biological invasion risk 
is lower inside protected areas (Gallardo et al., 2017; Paclibar 
& Tadiosa, 2019).

On the global scale, future distributions of some alien plant 
species are projected to expand (e.g., J.-Z. Wan et al., 
2016), while others will contract in parts of their current 
range (e.g., range contractions mainly at lower latitudes; 
Bellard, Leclerc, et al., 2013) under different climate change 
scenarios. A recent study predicted the global distribution 
of 336 terrestrial invasive alien plants under future climate 
change scenarios (J.-Z. Wan et al., 2016). It identifies the 
main future invasion hotspots for plant invasions to be in 
South America, Europe, New Zealand, and northern and 
Southern Africa (J.-Z. Wan et al., 2016). Other studies 

focus either on single alien plant species (R. Ahmad et al., 
2019; Bourdôt et al., 2012; Heshmati et al., 2019) or sets of 
species within specific regions (e.g., Adams et al., 2015; R. 
Ahmad et al., 2019; J. M. Allen & Bradley, 2016; Dullinger 
et al., 2017; Paclibar & Tadiosa, 2019). Most studies for 
Northern America and Europe report strong increases in 
overall potential future range sizes (e.g., Adhikari et al., 
2015; J. M. Allen & Bradley, 2016; Dullinger et al., 2017) 
under global change, with the magnitude of change within 
these regions varying according to the species investigated 
and increases in suitable ranges are mainly directed towards 
higher latitudes (J. M. Allen & Bradley, 2016). Studies for the 
United States and Europe project that most current invasion 
hotspots will remain stable spatially, but potential invasion 
alien species richness will increase between 64 to 102 per 
cent (J. M. Allen & Bradley, 2016; Dullinger et al., 2017).

For Europe, a prediction of future development of plant 
invasions until 2080 under three socioeconomic scenarios 
differing in focus on economic growth vs. sustainability has 
been made based on data from vegetation plots (Chytrý 
et al., 2012). Under all scenarios an increase in the level 
of invasion was projected for north-western and northern 
Europe, and under two of the scenarios a decrease 
for some agricultural areas of Eastern Europe where 
abandonment of agricultural land is expected. However, 
the implementation of sustainability policies would not 
automatically restrict the spread of alien plants (Chytrý et 
al., 2012).

Following a business-as-usual scenario, thereby assuming 
that drivers will develop in the future as observed in the 
past, alien vascular plants species numbers are expected 
to increase steadily across all continents with only North 
America showing a weak sign of saturation by 2050 
(Seebens, Bacher, et al., 2021; Figure 2 .38). The range of 
the projected increase of alien vascular plants lies between 
1 per cent (Pacific Islands) and 41 per cent (Temperate Asia) 
from 2005-2050 (Table 2 .28). Likewise, relative increases in 
species numbers are projected to increase more strongly in 
aquatic than non-aquatic environments (Seebens, Bacher, et 
al., 2021). In the marine realm, future increases in alien algae 
species introductions are projected for Asia and Europe 
(Seebens, Bacher, et al., 2021) and mainly along the major 
shipping routes (Sardain et al., 2019).

2.6.4 Microorganisms

A recent review of species distribution models used for 
fungi has identified 75 studies predicting the potential 
distribution of fungi under current climates (Hao et al., 2020). 
The majority of studies deal with one species only or with 
multiple species from the same genus (e.g., Phytophthora; 
Scott et al., 2019) and generally invasion risk is predicted to 
be higher as currently observed, both in terms of numbers 
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of alien fungi present (Barwell et al., 2021; Bebber et al., 
2019; Scott et al., 2019) and of occupied range (e.g., 
Feldmeier et al., 2016; Kriticos et al., 2013; Yonow et al., 
2013). For crop pests including herbivorous arthropods, 
pathogenic microbes, and virus species numbers within 
regions are predicted to be higher than observed levels 
(Bebber et al., 2019) and hotspots of pest invasion are 
located in Mesoamerica, Europe, North-East Asia and 
Australia (Bebber, 2015).

Global plant pathogen studies project an increase in 
potentially suitable areas, especially towards higher latitudes 
(Avila et al., 2019; Burgess et al., 2017). While for some 
pathogens (e.g., Phytophthora cinnamomi (Phytophthora 
dieback); Burgess et al., 2017) the entire potential future 
environmental range is modelled, other approaches couple 
both the pathogens and hosts when modelling future 
ranges (e.g., Diuraphis noxia (Russian wheat aphid), Avila 
et al., 2019). Additionally, there are approaches that extend 
distributional invasion risk measures by impact assessments 
that assess the overlap of the potential future distribution 
and cropland area (e.g., Raoiella indica (red palm mite); 
Amaro & de Morais, 2013). Pathogen distribution in many 
cases is linked to introduced invasive alien species that act 
as host species and projected invasions thus are inferred 
from host species presence and distribution change (e.g., 
chytridiomycosis; O’Hanlon et al., 2018). Crop pests are 
projected to shift poleward under climate change and 
increased human activities (Bebber et al., 2013; Fisher et 
al., 2012, 2020) and under current observed trends the 
main crop producing countries will be saturated with crop 
pathogens by 2050 (Bebber et al., 2014). In the marine 
realm, projections of planktonic and benthic species, as well 
as algae, identify a future potential poleward shift of alien 
species under climate change scenarios (Goldsmit et al., 
2020; Seebens et al., 2016).

2.6.5 Limitations for assessing 
future dynamics

Projections of future dynamics of alien and invasive alien 
species are severely limited by 1) data availability of past 
and current distributions of species, 2) knowledge gaps of 
the past and current distribution of species, 3) knowledge 
gaps of the understanding of causal relationships between 
species occurrences, environmental changes, drivers of 
change in nature, biological invasions, and impacts caused 
by invasive alien species, 4) lack of models to robustly 
predict future dynamics of biological invasions, and 5) the 
lack of scenarios covering a range of plausible future 
dynamics of drivers of change, which would allow exploring 
future trends under different scenarios. While models and 
scenarios can still be further developed, closing data gaps, 
particularly of historic distributions, is very difficult and even 
impossible in many cases.

Most global studies focus on either individual species or 
different subsets of species based on specific characteristics 
(e.g., the 100 of the worst global invaders as assessed by 
the IUCN ISSG; Bellard, Thuiller, et al., 2013; Gallardo et 
al., 2017) or on technical criteria such as data availability. 
Consequently, it is difficult to discern a comprehensive pattern 
of potential future alien species richness and distribution for 
individual taxonomic groups (but see Seebens, Bacher, et al., 
2021). Additionally, information on alien species distributions 
is not spatially and taxonomically homogeneous and is 
biased towards specific regions of the world, like Europe and 
Northern America (A. C. Hughes et al., 2021; C. Meyer et al., 
2016). Although online portals for storing biodiversity data 
such as GBIF provide billions of occurrence records, the data 
still covers just a fraction of known species. This limitation in 
accessibility to species occurrence data severely hampers 
modelling approaches for predicting and projecting future 
alien species richness and distribution patterns (Chapter 1, 
section 1 .6 .7 .3). 

A major challenge for most groups of microorganisms and 
fungi is the delineation of their native range resulting from 
a lack of data for these groups in general, as well as from 
high taxonomic uncertainty due to frequent historic changes 
and adaptations of the taxonomic concepts (e.g., due to 
new technological advancements; De Clerck et al., 2013; 
Essl et al., 2018; Hao et al., 2020; Sharma et al., 2015). In 
the absence of the ability to distinguish between the native 
and alien range of a species, robust risk assessments and 
predictions on the potential future spread and distribution 
are not possible.

In addition, alien pathogen research largely focusses 
on human pathogens, livestock, and cultivated plants, 
neglecting other facets of biodiversity and ecosystem 
services (Fischer et al., 2012; Peeler et al., 2011; Roy et al., 
2017; Usher, 1986). Further, most invasive alien pathogens 
are only described once their impacts are recognized in the 
invaded range (Roy et al., 2017) hampering the identification 
of potential future alien species risk assessments. Finally, 
many pathogens undergo host shifts in the invaded range 
(McTaggart et al., 2016; Peeler et al., 2011; Roy et al., 
2017), which can strongly affect disease-induced host 
mortality in the invaded range, which increases with the 
evolutionary distance between the native and alien host 
species (Farrell & Davies, 2019). Such information of host-
pathogen associations and interaction however are skewed 
to few well-studied alien pathogens (Farrell & Davies, 2019).

The systematic literature review of the models and 
scenarios9 revealed distinct trends and research gaps. 
Research is mainly focused on the Americas, followed 
by Europe and Central Asia, and Asia and the Pacific, 

9. Data management report available at: https://doi.org/10.5281/
zenodo.5706520
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indicating a large knowledge gap in models and scenario 
studies for Africa. The number of studies is accelerating at 
an equal pace across IPBES regions (Figure 2 .39). Plants 
and animal studies are the most studied taxonomic groups; 
however, when further separating animals into finer classes, 
it is clear that animal studies are dominated by research 
on invertebrates and overall plants are the predominantly 
studied group, which is consistent over time. Studies for 
fungi and microorganisms are lacking (Chapter 1, section 
1 .6 .7 .3). Studies projecting alien species distributions 
into the future are largely lacking for the marine realm and 
also not very numerous for freshwater regions compared 
to the terrestrial realm. While the number of studies has 
accelerated over time, it is more prominent in the terrestrial 
realm and especially in the Americas (Figure 2 .40). Finally, 
most scenario projections explore long-term (2050-2100) 
and short-term (until 2030) trends. Very few studies follow a 
backcasting approach that involves setting a desirable future 
end-point and determining possible pathways including 
policy measures to reach that end-point (Dreborg, 1996). 

To summarize, there is a distinct lack of model and scenario 
studies for Africa and Asia and the Pacific, the marine 

and freshwater realms. Finally, the scientific literature is 
dominated by correlative models whose application has 
increased more rapidly than for other modelling approaches. 
Also, process-based models have accelerated in their 
application; however, the application of hybrid models that 
combine both correlative and process-based approaches 
is not very common. Expert-based systems are not utilized 
for model and scenario studies implying a major gap in the 
utilization of these knowledge systems. A comprehensive 
overview of the review can be found in Chapter 1, section 
1 .6 .7 .3 and on identified gaps in Chapter 6, Table 6 .10 
and section 6 .6 .1 .1 and all information and data are 
available in the data management report.10 

Finally, in addition to data and knowledge gaps, the 
prediction of future dynamics of biological invasions is 
severely impeded by a lack of models to predict those 
dynamics and by scenarios to explore variations among 
plausible futures. Although several modelling approaches 
exist for individual species, regions, or drivers as presented 

10. Data management report available at: https://doi.org/10.5281/
zenodo.5706520
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above, no models are available to simulate biological 
invasions at large spatial and temporal scales, including a 
range of different species, drivers and impacts. In addition, 
quantitative scenarios of biological invasions are missing, 
which hampers the prediction of biological invasions under 
different plausible futures of driver developments. Qualitative 
scenario description recently became available (Roura-
Pascual et al., 2021), but the quantification and applications 
in modelling exercises remain to be tested. The field of 
biological invasions is distinctly lagging behind the progress 
of other drivers of change in nature, such as climate 
change and land-use changes, where much more attention 
has been paid over recent decades to develop models 
and scenarios.

2.7 CONCLUSIONS
The main objective of this chapter was to provide a global 
overview of the current understanding of the temporal trends 
and the spatial distribution (i.e., status) of alien and invasive 
alien species. By conducting extensive literature reviews 
and consulting experts from all over the world, assessment 
experts have gathered information on the trends and status 
of alien and invasive alien species across a wide range of 
taxonomic groups, geographic regions, and ecosystems. 
This assessment strove to provide an overview, which is as 
balanced as possible in terms of geographic and taxonomic 

coverage of species. However, complete coverage across 
all taxa, habitats, and regions is not possible due to many 
data and knowledge gaps. In some cases, the widespread 
gaps make a truly global and extensive assessment of the 
trends and status difficult. In addition, even well-sampled 
taxa and regions likely have incomplete information. 
Although this assessment considered a huge number of 
publications, including scientific publications, reports, and 
books in various languages, and consulted many experts, 
many sources of information could not be considered in 
this chapter, particularly non-English publications and grey 
literature, which are difficult to access if experts from that 
field or region are not directly involved. 

Although this chapter provides the most comprehensive 
assessment of the trends and status of the distribution of 
known alien and invasive alien species, it is nonetheless 
based on incomplete data, the extent of which varies by 
taxa, region, and habitat. However, the existence of such 
gaps does not imply that any robust conclusions cannot 
be drawn. In fact, there is a good understanding of the 
trends and status of alien species for many taxonomic 
groups and regions, which are presented in this chapter, 
and the most robust and general conclusions are shown 
in the executive summary at the beginning of this chapter. 
However, with incomplete data it is necessary to verify 
available information by assessing trends and status 
based on scientific expertise and taking underlying biases 
into account.
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Biological invasions are complex and intertwined with 
human transportation and goods, as well as other 
components of global change such as land use change, 
climate change, and human disturbances. This ecological 
complexity, the diversity and abundance of alien species, 
and the difficulty of identifying invaders in new environments, 
make their prevention and management challenging. The 
data presented in this chapter demonstrate that there is 
almost no place on Earth that has not experienced alien 
species introductions. It also shows that alien species 
introductions to new ranges are increasing across all taxa, 
all IPBES regions, and all units of analysis and that there 
are large data and knowledge gaps across these three 
sectors. The immediate result is that biological invasions 
are underestimated, with many species not yet identified as 
invasive and many ecosystems not yet recorded as invaded, 
or invaded by all the alien species that are present. 

Decision makers often interpret research and develop 
policies to address biological invasions based on incomplete 
and biased data. Identifying and closing these data and 
knowledge gaps is essential to assess and address 
biological invasions more accurately and comprehensively. 
While gathering the information underlying this chapter, 
experts have identified the following major limitations which 
hindered the assessment:

1. Lack of regional alien species lists: For many 
taxonomic groups, particularly among invertebrates 
and microorganisms, lists of reported alien species are 
lacking for many countries. Even for ecologically and 
economically important groups such as insects, such 
lists are often lacking.

2. Incomplete data: Available lists of alien species 
occurrences are often incomplete or outdated. While 
difficult to identify, a comparison of alien species 
numbers across countries often revealed strong 
differences among neighbouring countries, differences 
that are likely influenced by degree of survey intensity 
rather than actual occurrences. In addition, the spread 
of alien species is highly dynamic and thus maintaining 
an up-to-date list of alien species occurrences requires 
regular monitoring which is rare. Even more rare are 
data on the abundances of individual populations. They 
are so scarce that experts were unable to consider alien 
species population abundances in this chapter.

3. Lack of standardization: Available lists of alien species 
were often generated using different terms that vary 
in their definitions, concepts (including taxonomies), 
and data collection and sampling practices, making 
comparisons of available information across regions 
and taxa difficult. This is particularly problematic for 
distinguishing a species’ invasion status such as 
introduced, established, and invasive; these distinctions 

are often not specified, and if they are, the applied 
definitions are often not provided. Ideally, data is reported 
using standard concepts and terminologies, which are 
also explicitly detailed in the description of the data.

4. Coarse spatial resolution: The information on alien 
species occurrences is usually provided only at a coarse 
spatial resolution, such as the country level. However, 
the distribution of alien species within a country is often 
aggregated towards certain geographic areas within 
national borders. For a thorough assessment of biological 
invasions across spatial scales, it is essential to obtain 
information at finer resolutions that are ideally associated 
with coordinates of alien species occurrences.

Closing these gaps poses huge challenges to the scientific 
community. Below is a list of a few key challenges to 
improving assessments of the trends and status of alien and 
invasive alien species.

Improving collaboration

To fill data gaps and make invasion science truly global, 
greater, and more equitable, international collaboration is 
needed to build more global networks for monitoring, data 
sharing, and technology transfer (Kuebbing et al., 2022; 
Meyerson et al., 2022; Nuñez et al., 2021; Packer et al., 
2017). The trend towards open-source software, such as 
QGIS and statistical environments such as R, is helping to 
reduce disparities between rich and poorer regions, but 
costs associated with training scientists and executing 
research as well as prohibitive journal publication costs 
present serious obstacles (Chapter 6, section 6 .6 .2 .4). 
Many invasive alien species-focused research networks, 
database repositories, intergovernmental and international 
organizations, and international agreements are already in 
place (reviewed in Meyerson et al., 2022). Despite these 
efforts, additional coordination and collaboration are 
needed, particularly because individual countries often do 
not have the capacities to respond to the issues of biological 
invasions sufficiently (Chapter 6, section 6 .3 .1 .1; Early et 
al., 2016; Pyšek, Hulme, et al., 2020). In addition, it would 
be beneficial to engage in a two- or multi-way discussion 
with public and stakeholders through a new “dialogue 
communication model” or “public engagement model” 
(Chapter 5, section 5 .2 .1; Chapter 6, section 6 .4), based 
on a genuine interchange with the public that recognizes 
and incorporates differences in knowledge, values, 
perspectives, and interests (Courchamp et al., 2017). This 
will allow better understanding of biological invasions and 
supporting data acquisition, research and management. 

Closing knowledge gaps

Thoroughly assessing the trends and status of biodiversity 
requires deep knowledge about nature and the 
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ecosystems supporting biodiversity. Without knowing the 
species and their life histories, their interactions, and the 
mechanisms shaping environments worldwide, the state 
of biodiversity cannot be fully assessed. While information 
about nature is accumulating at an unprecedented pace, 
there are still major knowledge gaps, particularly for 
relatively inconspicuous organisms such as invertebrates, 
fungi, and microorganisms, and less accessible systems 
such as in marine habitats, but also inland waters, and 
in geographic areas such as Central Africa, Central Asia, 
and remote islands. In addition, there is a lack of an 
adequate understanding of biotic and abiotic species 
interactions, without which experts cannot fully grasp 
how species respond to environmental changes nor 
build models predicting future biodiversity change under 
different scenarios of human development. Closing these 
knowledge gaps is therefore essential to fully inform 
policies that can safeguard nature and move societies 
towards sustainability.

Efficient and standardized sampling and data 
processing

Comprehensive and thorough assessments of biological 
invasions and biodiversity in general need global and 
comprehensive monitoring and databases (Latombe et al., 
2017; Meyerson et al., 2022; Packer et al., 2017), which 
can only be obtained by implementing the following: 

 Collection of records of alien species occurrences, and 
regular and repeated deposition into publicly accessible 
databases, particularly in regions and for taxonomic 
groups with the most severe gaps. 

 Mobilization of existing data by making it accessible 
to the wider community in electronic formats and by 
providing these data under the Findable, Accessible, 
Interoperable, Reusable (FAIR) principles of open 
science (Wilkinson et al., 2016). 

 Standardization of available and accessible data to allow 
comparison, which could be accomplished by adopting 
a standard terminology for biodiversity information 
as Darwin Core has done, and by using open and 
widely used data formats such as csv or txt (Groom et 
al., 2019).

 Documentation of data transformation steps, ensuring 
that they are repeatable and associated with the data 
(Seebens et al., 2020). 

 Finally, integration of standardized data into open 
databases or data portals such as GBIF or the Ocean 
Biodiversity Information System (OBIS) to enable 
researchers and stakeholders to conduct tailored 
biodiversity assessments. 

Ideally, all steps from recording to storing data would 
follow standard and published protocols to make science, 
decision-making, and the assessment of biodiversity 
comprehensive, transparent, interoperable and reproducible, 
which ultimately increases trust in results and decisions 
(e.g., De Pooter et al., 2017; Groom et al., 2017; Haider et 
al., 2022; Roy et al., 2018).

Technological advances

Similar to the increase in information, technologies are 
developing rapidly including those designed to monitor 
biodiversity. Advances range from new satellite products 
to environmental DNA to fully automated biodiversity 
measurement stations. For example, satellites now provide 
opportunities to measure not only vegetation patterns at 
high resolution but also to track the movement of species 
or to distinguish individual plant species and measure plant 
traits which can provide early detection of new alien species 
introductions. Likewise, environmental DNA can help to 
populate lists of species occurring in certain areas, including 
rare species and emerging new alien species. Cameras and 
pattern recognition through artificial intelligence can identify 
species at comparatively low cost but on large geographic 
scales. Drones can now monitor biodiversity and fully 
automated biodiversity stations similar to weather stations 
are currently developed to obtain high resolution recordings 
of biodiversity. However, although these developments 
are promising, the technologies often still require major 
advancements to get ready for measuring biodiversity at 
the species level. In addition, many technological solutions 
are still used in isolation and large-scale solutions to obtain 
comprehensive coverage of biodiversity monitoring have not 
yet been achieved.

Engagement with policy makers

Progress towards addressing data gaps for biological 
invasions can benefit from engagement by policy makers, 
funding, trained (citizen) scientists, and technicians, 
adequate infrastructure to achieve standardized tools for 
long-term monitoring, modular regulatory frameworks 
that integrate incentives and compliance mechanisms 
with respect for diverse transcultural needs, biosecurity 
awareness and measures and synergies with other 
conservation strategies (Meyerson et al., 2022; Chapter 5, 
section 5 .4 .3 .2(a); Chapter 6, section 6 .6 .2 .1). 

Inclusive biodiversity monitoring (citizen 
science, Indigenous Peoples and local 
communities)

Global comprehensive taxonomic monitoring of alien and 
native biota could be improved through engagement with 
people outside of academia, agencies, and institutions. 
People interested in nature and willing to contribute to 
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recording of species occurrences could be encouraged 
to provide their knowledge and findings to other people 
and databases through, for example, community science 
projects, participatory research programmes and online 
platforms such as iNaturalist, CoralWatch, Project Noah, 
or e-Bird (Aristeidou et al., 2021; Ballard, Dixon, et al., 
2017; Ballard, Robinson, et al., 2017; McKinley et al., 
2017; Chapter 1, Box 1 .15; Chapter 6, section 6 .6 .2 .1). 
Such a large scale, ideally global, data reporting and 
sharing programme requires, however, concerted efforts 
of the international community and thus would benefit 
from greater efforts and incentives by governments and 
institutions to encourage people to contribute. Obtaining 
data through community science of sufficient quality for 
use in biodiversity assessments can be achieved through 
concerted coordination and organization, training, guidance, 
and funding. Standards for sampling and reporting have 
to be defined and adhered to, and needs and goals must 
consider the requirements of individual communities. In 
this way, inclusive biodiversity monitoring would include 
Indigenous Peoples and local communities who have 
a deep understanding about those areas that are least 
represented in global biodiversity assessments. Such 
an approach to fill data gaps for alien and invasive alien 
species is inclusive, adaptive, and flexible. As integrated and 
collaborative networks develop, effective global strategies to 
address invasive alien species will finally be met.

Accounting for incomplete knowledge

Several data gaps could be filled by increasing efforts and 
investments into biodiversity research and monitoring. 
However, it seems unlikely that obtaining complete and 
regular data at large geographic scales is achievable. 
Thus, it is also necessary to not only acknowledge the 
lack of information, but to also quantify uncertainty and 
incompleteness of data and to explicitly account for those 
biases in biodiversity assessments and analyses. This 
requires the development and adoption of standardized 
methods to quantify uncertainty. Having a standardized 
approach to measure and account for incomplete data 
would increase robustness of the results, and increase 
confidence in individual reports of biological invasions and 
biodiversity research more generally (Franz & Sterner, 2018).
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